XRF AND XRD TESTING FOR SAND MINERAL CONTENT IDENTIFICATION AT TALANG SIRING BEACH
DOI:
https://doi.org/10.59052/edufisika.v8i2.27428Keywords:
Natural Minerals, XRD, XRFAbstract
In the Talang siring tour of the Pamekasan district, numerous illegal mining operations along the coast for sale and personal use produce building materials with low economic value. However, if the sand is processed further, it will produce materials with high technology utilization and economic value. This research is a preliminary investigation into converting sand into high-value minerals to be utilized economically. Using X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) experiments, this study aims to determine the sand's mineral content in the Talang Siring tourist area in Pamekasan Regency. Initial identification is the XRF test function for analyzing sand's chemical elements and composition. The purpose of XRD is to analyze the crystal structure and correlate the results with Macth and origin software based on the XRF results. The results of the XRF test indicated that Silicone had the highest concentration of minerals at 63.8%, followed by Calcium at 29.4% and Iron at 2.45%. The XRD test results indicated that the sand's mineral composition was qualitatively SiO2 90%, CaCO3 8%, Iron 1%, and the remainder 1%.
Downloads
References
Almajed, A., Lemboye, K., Arab, M. G., & Alnuaim, A. (2020). Mitigating wind erosion of sand using biopolymer-assisted EICP technique. Soils and Foundations, 60(2), 356–371. https://doi.org/10.1016/j.sandf.2020.02.011
Ardiani, N. R., Setianto, S., Santosa, B., Wibawa, B. M., Panatarani, C., & Made Joni, I. (2020). Quantitative analysis of iron sand mineral content from the south coast of cidaun, west Java using rietveld refinement method. AIP Conference Proceedings, 2219(May), 1–6. https://doi.org/10.1063/5.0003018
Arivumangai, A., Narayanan, R. M., & Felixkala, T. (2020). Study on sulfate resistance behaviour of granite sand as ï¬ne aggregate in concrete through material testing and XRD analysis. Materials Today: Proceedings, 43(xxxx), 1724–1729. https://doi.org/10.1016/j.matpr.2020.10.354
Ariyanto, I. J. and S. V. (2023). Identification of Rock Characteristics Using XRF, XRD, and SEM Tests on Api Alam in Pamekasan. Indonesian Physical Review, 6(1), 114–123. https://doi.org/10.29303/ip r.v5i2.138
Ariyanto, S. V., & Joni, I. (2019). Zone Landslide Analysis Using Geophysical Method and Analysis of Soil Type for Disaster Mitigation In Waru Pamekasan. Indonesian Journal of Applied Physics, 9(02), 68. https://doi.org/10.13057/ijap.v9i2.34520
Assi, A., Bilo, F., Zanoletti, A., Ducoli, S., Ramorino, G., Gobetti, A., Zacco, A., Federici, S., Depero, L. E., & Bontempi, E. (2020). A circular economy virtuous example-use of a stabilized waste material instead of calcite to produce sustainable composites. Applied Sciences (Switzerland), 10(3), 1–16. https://doi.org/10.3390/app10030754
Benjamin K. Sovacool, Saleem H. Ali, Morgan Bazilian, Ben Radley, Benoit Nemery, Julia Okatz, D. M. (2020). Sustainable minerals and metals for a low-carbon future. Science, 367(6473), 30–33.
ChruÅ›ciel, J. J. (2022). Modiï¬cations of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review. Polymers, 14(20), 1–38. https://doi.org/10.3390/polym14204382
Correa-Ochoa, M. A., Rojas, J., Gómez, L. M., Aguiar, D., Palacio-Tobón, C. A., & Colorado, H. A. (2023). Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy. Sustainability (Switzerland), 15(11), 1–32. https://doi.org/10.3390/su15118504
Gkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024
Gyarmati, G., Budavári, I., Fegyverneki, G., & Varga, L. (2021). The effect of sand quality on the bending strength and thermal distortion of chemically bonded sand. Heliyon, 7(7), 1–8. https://doi.org/10.1016/j.heliyon.2021.e07624
Hadi, S., Abbas, H., Almajed, A., Binyahya, A., & Al-Salloum, Y. (2022). Biocementation by Sporosarcina pasteurii ATCC6453 under simulated conditions in sand columns. Journal of Materials Research and Technology, 18(1), 4375–4384. https://doi.org/10.1016/j.jmrt.2022.04.105
Joni, I., & Ariyanto, S. V. (2021). Identification of Sand Mineral Content at Beach Tourist Attractions in Sampang Regency through X-Ray Fluorescence and X-Ray Diffraction Testing. Jurnal Ilmu Fisika | Universitas Andalas, 13(1), 26–33. https://doi.org/10.25077/jif.13.1.26-33.2021
Kenzhaliyev, B., Surkova, T., Berkinbayeva, A., Amanzholova, L., Mishra, B., Abdikerim, B., & Yessimova, D. (2022). Modiï¬cation of Natural Minerals with Technogenic Raw Materials. Metals, 12(11), 1–10. https://doi.org/10.3390/met12111907
Kumar, A., & Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22(xxxx), 737–742. https://doi.org/10.1016/j.matpr.2019.10.037
Lai, Y., Yu, J., Liu, S., Liu, J., Wang, R., & Dong, B. (2021). Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Construction and Building Materials, 273(121729), 1–14. https://doi.org/10.1016/j.conbuildmat.2020.121729
Malathy, R., Rajagopal Sentilkumar, S. R., Prakash, A. R., Das, B. B., Chung, I. M., Kim, S. H., & Prabakaran, M. (2022). Use of Industrial Silica Sand as a Fine Aggregate in Concrete—An Explorative Study. Buildings, 12(8), 1–26. https://doi.org/10.3390/buildings12081273
Massinai, M. A., Mamudi, W., Fawzy, M., & Massinai, I. (2021). Distribution Pattern Identification of Mineral using XRF and XRD Method in Jeneberang Watershed, Indonesia. Journal of Hunan University Natural Sciences, 48(6), 6–12.
Md. Ripaj Uddin, Mayeen Uddin Khandaker, Nahida Akter, Md. Farid Ahmed, Syed Md, Minhaz Hossain, Abdul Gafur, M. J. A., & Idris, M. A. R. and A. M. (2022). Identiï¬cation and Economic Potentiality of Mineral Sands Resources of Hatiya Island, Bangladesh. Mdpi, 12(1436), 1–16. https://doi.org/10.3390/min12111436
Mert Tezer, M., & Başaran Bundur, Z. (2022). Use of Natural Minerals to Immobilize Bacterial Cells for Remediating Cracks in Cement-Based Materials. Journal of Materials in Civil Engineering, 34(3), 1–13. https://doi.org/10.1061/(asce)mt.1943-5533.0004098
Niu, Y. Q., Liu, J. H., Aymonier, C., Fermani, S., Kralj, D., Falini, G., & Zhou, C. H. (2022). Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chemical Society Reviews, 51(18), 7883–7943. https://doi.org/10.1039/d1cs00519g
Ramdhani, E. P., Wahyuni, T., Ni’mah, Y. L., Suprapto, & Prasetyoko, D. (2018). Extraction of Alumina from Red Mud for Synthesis of Mesoporous Alumina by Adding CTABr as Mesoporous Directing Agent. Indonesian Journal of Chemistry, 18(2), 337–343. https://doi.org/10.22146/ijc.25108
Samouh, H., Nishimoto, S., Yoshida, H., Sawada, S., Kontani, O., Suzuki, K., & Maruyama, I. (2021). Modal analysis of rock forming minerals: Contribution of XRD/Rietveld analysis compared to the classic point counting method. Journal of Advanced Concrete Technology, 19(5), 395–413. https://doi.org/10.3151/jact.19.395
Shen, J., & Shen, Y. (2021). Identiication of cinnabar existing in diferent objects using portable coupled XRF XRD, laboratory type XRD and micro Raman spectroscopy: comparison of the techniques. SN Applied Sciences, 3(12), 1–15. https://doi.org/10.1007/s42452-021-04858-0
Strejcová, K., TiÅ¡ler, Z., Svobodová, E., & Velvarská, R. (2020). Characterization of Modiï¬ed Natural Minerals and Rocks for Possible Adsorption and Catalytic Use. Molecules (Basel, Switzerland), 25(21), 1–15. https://doi.org/10.3390/molecules25214989
Supiyani, Agusnar, H., Sugita, P., & Nainggolan, I. (2022). Preparation sodium silicate from rice husk to synthesize silica nanoparticles by sol-gel method for adsorption water in analysis of methamphetamine. South African Journal of Chemical Engineering, 40(November 2021), 80–86. https://doi.org/10.1016/j.sajce.2022.02.001
Suriyanto Bakri, Muhammad Anas, Muhamad Hardin Wakila, C. A. C. (2023). Geochemical Characterization of Silica Sand in the Sidenreng Rappang Area Based on X-Ray Diffraction Analysis and X-Ray Fluorescence Analysis. Journal of Geology & Exploration, 2(1), 1–7. https://doi.org/10.58227/jge.v2i1.36
Tice, M. M., Hurowitz, J. A., Allwood, A. C., Jones, M. W. M., Orenstein, B. J., Davidoff, S., Wright, A. P., Pedersen, D. A. K., Henneke, J., Tosca, N. J., Moore, K. R., Clark, B. C., McLennan, S. M., Flannery, D. T., Steele, A., Brown, A. J., Zorzano, M. P., Hickman-Lewis, K., Liu, Y., … Gupta, S. (2022). Alteration history of SéÃtah formation rocks inferred by PIXL x-ray fluorescence, x-ray diffraction, and multispectral imaging on Mars. Science Advances, 8(47), 1–16. https://doi.org/10.1126/sciadv.abp9084
Wang, G., Li, A., Zhao, W., Xu, Z., Ma, Y., Zhang, F., Zhang, Y., Zhou, J., & He, Q. (2021). A Review on Fabrication Methods and Research Progress of Superhydrophobic Silicone Rubber Materials. Advanced Materials Interfaces, 8(1), 1–19. https://doi.org/10.1002/admi.202001460
Wu, Y., Liu, J., Jiao, X., Cheng, F., Lai, G., & Yang, X. (2020). UV-Cured Transparent Flexible Silicone Materials with High Tensile Strength. ACS Omega, 5(11), 6199–6206. https://doi.org/10.1021/acsomega.0c00401
Yao, Q., Li, Z., Lu, C., Peng, L., Luo, Y., & Teng, X. (2021). Development of Engineered Cementitious Composites Using Sea Sand and Metakaolin. Frontiers in Materials, 8(August), 1–13. https://doi.org/10.3389/fmats.2021.711872
Yu, X., Chu, J., Yang, Y., & Qian, C. (2021). Reduction of ammonia production in the biocementation process for sand using a new biocement. Journal of Cleaner Production, 286(xxxx), 124928. https://doi.org/10.1016/j.jclepro.2020.124928
Zielecka, M., Rabajczyk, A., Pastuszka, Å., & Jurecki, L. (2020). Flame resistant silicone-containing coating materials. Coatings, 10(5), 1–14. https://doi.org/10.3390/COATINGS10050479
Zunino, F., Boehm-Courjault, E., & Scrivener, K. (2020). The impact of calcite impurities in clays containing kaolinite on their reactivity in cement after calcination. Materials and Structures/Materiaux et Constructions, 53(2), 1–15. https://doi.org/10.1617/s11527-020-01478-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sandy Vikki Ariyanto, Idon Joni, Fredy Yunanto
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.