APPLICATION OF BESSEL EQUATION TO CIRCULAR SLIT FRAUNHOFER DIFFRACTION: A SYSTEMATIC REVIEW

Authors

  • Anisa Qoriq Atun Nasiroh Universitas Sriwijaya
  • Lira Lira Universitas Sriwijaya
  • Intan Purnama Sari Universitas Sriwijaya
  • Hamdi Akhsan Universitas Sriwijaya

DOI:

https://doi.org/10.59052/edufisika.v10i1.42657

Keywords:

Bessel Funciton, Diffraction, Fraunhofer

Abstract

This article aims to introduce the development of a simulation model using matlab in the calculation of the bessel function to describe the fraunhofer diffraction pattern in a circular slit. This research method uses the Systematic Literature Review (SLR) method equipped with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, this method involves searching, filtering, and analyzing literature from reliable sources to compile a comprehensive theoretical framework. Based on the simulation of circular slit diffraction using matlab application with the same wavelength and different radii of the circle, it shows that the larger the radius of the circle will produce a narrower diffraction pattern, while the smaller the radius of the circle will produce a wider diffraction pattern. Meanwhile, when using the same radius and different wavelengths, it shows that longer wavelengths produce wider diffraction patterns, while shorter wavelengths produce narrower diffraction patterns.

Downloads

Download data is not yet available.

References

Al-Kahfi, A. Z., & Yanuarief, C. (2019). Variasi Panjang Gelombang Cahaya Pada Simulasi Pola Difraksi Fraunhofer Untuk Celah Lingkaran. Prosiding Seminar Nasional Fisika Festival. https://sunankalijaga.org/prosiding/index.php/fisfest/article/view/752

Anggur, F., Warsito, A., Johannes, A. Z., & Ch. Louk, A. (2019). Kajian Komputasi Numerik Model Integratif Pada Difraksi Celah Lingkaran Menggunakan Metode Pendekatan Simpson 1/3. DOI:10.35508/fisa.v4i2.1830

Azlan, C. A., Wong, J. H. D., Tan, L. K., Huri, M. S. N. A. D., Ung, N. M., Pallath, V., Tan, C. P. L., Yeong, C. H., & Ng, K. H. (2020). Teaching and learning of postgraduate medical physics using Internet-based e-learning during the COVID-19 pandemic – A case study from Malaysia. Physica Medica, 80, 10–16. https://doi.org/10.1016/j.ejmp.2020.10.002

Borghi, R. (2022). Paraxial sharp-edge diffraction: a general approach. Optics Express, 30(15), 27080. https://doi.org/10.1364/oe.462160

Budak, V. P., Efremenko, D. S., & Smirnov, P. A. (2020). Fraunhofer diffraction description in the approximation of the light field theory. Light and Engineering, 28(5), 25–30. https://doi.org/10.33383/2020-021

Chillara, V. K., Davis, E. S., Pantea, C., & Sinha, D. N. (2019). Ultrasonic Bessel beam generation from radial modes of piezoelectric discs. Ultrasonics, 96, 140–148. https://doi.org/10.1016/j.ultras.2019.02.002

Febrianti, S. (2024). Sustainability Finance Dan Green Investment: Literature Review Dengan Metode Prisma. Manajemen: Jurnal Ekonomi, 6(1), 95-106. DOI:10.36985/manajemen.v6i1.1151

Fu, Q. (2023). Complex Structured Light Field Generation Based on the Diffraction Principle of Microporous Arrays. Advances in Computer, Signals and Systems, 7(11), 74–82. https://doi.org/10.23977/acss.2023.071111

Grunwald, R., & Bock, M. (2020). Needle beams: a review. In Advances in Physics: X (Vol. 5, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/23746149.2020.1736950

Heitman, Z., Bremer, J., Rokhlin, V., & Vioreanu, B. (2015). On the asymptotics of Bessel functions in the Fresnel regime. In Applied and Computational Harmonic Analysis (Vol. 39, Issue 2, pp. 347–356). Academic Press Inc. https://doi.org/10.1016/j.acha.2014.12.002

Karahroudi, M. K., Parmoon, B., Qasemi, M., Mobashery, A., & Saghafifar, H. (2017). Generation of perfect optical vortices using a Bessel–Gaussian beam diffracted by curved fork grating. Applied Optics, 56(21), 5817. https://doi.org/10.1364/ao.56.005817

Khachatrian, A. Zh. (2021). The Fraunhofer Pattern of а Wave Field Generating by a System оf Coherent Emitting Point Sources. Armenian Journal of Physics, 201–212. https://doi.org/10.54503/18291171-2021.14.4-201

Khonina, S. N., Kazanskiy, N. L., Karpeev, S. V., & Butt, M. A. (2020). Bessel beam: Significance and applications —A progressive review. In Micromachines (Vol. 11, Issue 11). MDPI AG. https://doi.org/10.3390/mi11110997

Korolenkoо, P. V. (2020). Wave Beams with a Fractal Structure, Their Properties and Applications: A Literature Review. DOI:10.3103/S1541308X2004007X

Liao, Y., Song, C., Xiang, Y., & Dai, X. (2020). Recent Advances in Spatial Self-Phase Modulation with 2D Materials and its Applications. In Annalen der Physik (Vol. 532, Issue 12). Wiley-VCH Verlag. https://doi.org/10.1002/andp.202000322

Liu, Y., Liu, Z., Hénault, F., Ortiz, A., Frain, M., & Feng, Y. (2023). Fraunhofer diffraction at the two-dimensional quadratically distorted (QD) grating. Optics Express, 31(26), 43522. https://doi.org/10.1364/oe.502016

Liu, Y., Wang, L., Dong, J., Xia, J., Yang, L., & Jin, Y. (2022). Theoretical simulation on Fraunhofer diffraction of arbitrarily shaped aperture. Journal of Physics: Conference Series, 2313(1). https://doi.org/10.1088/1742-6596/2313/1/012026

Navarro, A. L. S., Moreno, Y. T., Castro, M., Rodriguez, H., & Jerez, V. (2021). Fraunhofer diffraction pattern due to spatial self-2 phase modulation of a Gaussian beam by a 3 photorefractive crystal 4. DOI:10.1364/opticaopen.21913146

Ni, J., Wang, C., Zhang, C., Hu, Y., Yang, L., Lao, Z., Xu, B., Li, J., Wu, D., & Chu, J. (2017). Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light: Science and Applications, 6(7). https://doi.org/10.1038/lsa.2017.11

Nurdianto, Safiuddin, L. O., & Eso, R. (2020). Simulasi Persamaan Difraksi Fraunhofer pada Celah Lingkaran dengan Menggunakan Visual Basic for Application (VBA) Spreadsheets Excel. JIPFi Jurnal Penelitian Pendidikan Fisika, 5(3), 215–220. http://ojs.uho.ac.id/index.php/JIPFI

Peters, E., Funes, G., Martínez-León, L., & Tajahuerce, E. (2022). Dynamics of Fractional Vortex Beams at Fraunhofer Diffraction Zone. Photonics, 9(7). https://doi.org/10.3390/photonics9070479

Porfirev, A. P., Kuchmizhak, A. A., Gurbatov, S. O., Juodkazis, S., Khonina, S. N., & Kul’chin, Y. N. (2021). Phase singularities and optical vortices in photonics. Physics-Uspekhi. https://doi.org/10.3367/ufne.2021.07.039028

Pradana, S. D. S., Parno, & Handayanto, S. K. (2017). Pengembangan tes kemampuan berpikir kritis pada materi Optik Geometri untuk mahasiswa Fisika. Jurnal Penelitian Dan Evaluasi Pendidikan, 21(1), 51–64. https://doi.org/10.21831/pep.v21i1.13139

Pratidhina, E., Dwandaru, W. S. B., & Kuswanto, H. (2020). Exploring Fraunhofer diffraction through Tracker and spreadsheet: An alternative lab activity for distance learning. Revista Mexicana de Fisica E, 17(2), 285–290. https://doi.org/10.31349/REVMEXFISE.17.285

Purnama, A. Y., Kuswanto, H., Rani, S. A., Putranta, H., & Winingsih, P. H. (2021). Simulasi Difraksi Fraunhofer Menggunakan Media Spreadsheet dan GNU Octave Sebagai Alternatif Pembelajaran dimasa Pandemi. In Desember 2021 (Vol. 5, Issue 2). http://e-journal.hamzanwadi.ac.id/index.php/kpj/index

Saadati-Sharafeh, F., Borhanifar, A., Porfirev, A. P., Amiri, P., Akhlaghi, E. A., Khonina, S. N., & Azizian-Kalandaragh, Y. (2020). The superposition of the Bessel and mirrored Bessel beams and investigation of their self-healing characteristic. Optik, 208. https://doi.org/10.1016/j.ijleo.2019.164057

Sastypratiwi, H., & Nyoto, R. D. (2020). Analisis data artikel sistem pakar menggunakan metode systematic review. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 6(2), 250-257. DOI:10.26418/jp.v6i2.40914

Setyono, A., Nugroho, S. E., & Yulianti, I. (2016). Analisis Kesulitan Siswa Dalam Memecahkan Masalah Fisika Berbentuk Grafik. In UPEJ (Vol. 5, Issue 3). http://journal.unnes.ac.id/sju/index.php/upej

Siemion, A. (2021). The magic of optics—an overview of recent advanced terahertz diffractive optical elements. In Sensors (Switzerland) (Vol. 21, Issue 1, pp. 1–22). MDPI AG. https://doi.org/10.3390/s21010100

Solano Navarro, A., Moreno, Y. T., Fontecha, J. D., Florez, M., & Jerez, V. (2023). Fraunhofer diffraction pattern of a Gaussian beam passing through a photorefractive crystal Bi12GeO20. Journal of the Optical Society of America B, 40(5), 1156-1161. DOI:10.1364/JOSAB.480944

Stoyanov, L., Zhekova, M., Stefanov, A., Stefanov, I., Paulus, G. G., & Dreischuh, A. (2020). Zeroth- and first-order long range non-diffracting Gauss–Bessel beams generated by annihilating multiple-charged optical vortices. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78613-7

Sun, H. (2025). On the Limitation of Fraunhofer Diffraction Equation. DOI:10.1364/opticaopen.28195289

Suzuki, M. S. (2020). Diffraction by a single slit. Binghamton.

Trisnowati, E., Marwoto, P., Iswari, R. S., & Cahyono, E. (2022). Distribution of the Fraunhofer Diffraction Intensity by a Rectangular Slit Using a Razor Blade. Jurnal Penelitian Pendidikan IPA, 8(3), 1524–1531. https://doi.org/10.29303/jppipa.v8i3.1284

Winarti, P. (2021). Analisis Kesulitan Belajar Mahasiswa dalam Perkuliahan Konsep Dasar IPA Fisika Secara Daring di Masa Pandemi Covid-19. Jurnal Komunikasi Pendidikan, 5(1), 93–107. www.journal.univetbantara.ac.id/index.php/komdik

Yanuarief, C. (2016). Simulasi Pola Difraksi Fraunhofer Untuk Celah Lingkaran Dengan Modifikasi Fungsi Bessel. https://ejournal.uin-suka.ac.id/pusat/integratedlab/article/view/1132

Zapata Valencia, S. I., Gómez-Ramírez, A., Tobon-Maya, H., Buitrago-Duque, C., & Garcia-Sucerquia, J. (2023). Beyond maxima and minima: a hands-on approach for undergraduate teaching of diffraction. 2. https://doi.org/10.1117/12.2662594

Downloads

Published

2025-04-14

How to Cite

Nasiroh, A. Q. A., Lira, L., Sari, I. P., & Akhsan, H. (2025). APPLICATION OF BESSEL EQUATION TO CIRCULAR SLIT FRAUNHOFER DIFFRACTION: A SYSTEMATIC REVIEW. EduFisika: Jurnal Pendidikan Fisika, 10(1), 54–64. https://doi.org/10.59052/edufisika.v10i1.42657