APPLICATION OF BESSEL EQUATION TO CIRCULAR SLIT FRAUNHOFER DIFFRACTION: A SYSTEMATIC REVIEW
DOI:
https://doi.org/10.59052/edufisika.v10i1.42657Keywords:
Bessel Funciton, Diffraction, FraunhoferAbstract
This article aims to introduce the development of a simulation model using matlab in the calculation of the bessel function to describe the fraunhofer diffraction pattern in a circular slit. This research method uses the Systematic Literature Review (SLR) method equipped with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, this method involves searching, filtering, and analyzing literature from reliable sources to compile a comprehensive theoretical framework. Based on the simulation of circular slit diffraction using matlab application with the same wavelength and different radii of the circle, it shows that the larger the radius of the circle will produce a narrower diffraction pattern, while the smaller the radius of the circle will produce a wider diffraction pattern. Meanwhile, when using the same radius and different wavelengths, it shows that longer wavelengths produce wider diffraction patterns, while shorter wavelengths produce narrower diffraction patterns.
Downloads
References
Al-Kahfi, A. Z., & Yanuarief, C. (2019). Variasi Panjang Gelombang Cahaya Pada Simulasi Pola Difraksi Fraunhofer Untuk Celah Lingkaran. Prosiding Seminar Nasional Fisika Festival. https://sunankalijaga.org/prosiding/index.php/fisfest/article/view/752
Anggur, F., Warsito, A., Johannes, A. Z., & Ch. Louk, A. (2019). Kajian Komputasi Numerik Model Integratif Pada Difraksi Celah Lingkaran Menggunakan Metode Pendekatan Simpson 1/3. DOI:10.35508/fisa.v4i2.1830
Azlan, C. A., Wong, J. H. D., Tan, L. K., Huri, M. S. N. A. D., Ung, N. M., Pallath, V., Tan, C. P. L., Yeong, C. H., & Ng, K. H. (2020). Teaching and learning of postgraduate medical physics using Internet-based e-learning during the COVID-19 pandemic – A case study from Malaysia. Physica Medica, 80, 10–16. https://doi.org/10.1016/j.ejmp.2020.10.002
Borghi, R. (2022). Paraxial sharp-edge diffraction: a general approach. Optics Express, 30(15), 27080. https://doi.org/10.1364/oe.462160
Budak, V. P., Efremenko, D. S., & Smirnov, P. A. (2020). Fraunhofer diffraction description in the approximation of the light field theory. Light and Engineering, 28(5), 25–30. https://doi.org/10.33383/2020-021
Chillara, V. K., Davis, E. S., Pantea, C., & Sinha, D. N. (2019). Ultrasonic Bessel beam generation from radial modes of piezoelectric discs. Ultrasonics, 96, 140–148. https://doi.org/10.1016/j.ultras.2019.02.002
Febrianti, S. (2024). Sustainability Finance Dan Green Investment: Literature Review Dengan Metode Prisma. Manajemen: Jurnal Ekonomi, 6(1), 95-106. DOI:10.36985/manajemen.v6i1.1151
Fu, Q. (2023). Complex Structured Light Field Generation Based on the Diffraction Principle of Microporous Arrays. Advances in Computer, Signals and Systems, 7(11), 74–82. https://doi.org/10.23977/acss.2023.071111
Grunwald, R., & Bock, M. (2020). Needle beams: a review. In Advances in Physics: X (Vol. 5, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/23746149.2020.1736950
Heitman, Z., Bremer, J., Rokhlin, V., & Vioreanu, B. (2015). On the asymptotics of Bessel functions in the Fresnel regime. In Applied and Computational Harmonic Analysis (Vol. 39, Issue 2, pp. 347–356). Academic Press Inc. https://doi.org/10.1016/j.acha.2014.12.002
Karahroudi, M. K., Parmoon, B., Qasemi, M., Mobashery, A., & Saghafifar, H. (2017). Generation of perfect optical vortices using a Bessel–Gaussian beam diffracted by curved fork grating. Applied Optics, 56(21), 5817. https://doi.org/10.1364/ao.56.005817
Khachatrian, A. Zh. (2021). The Fraunhofer Pattern of а Wave Field Generating by a System оf Coherent Emitting Point Sources. Armenian Journal of Physics, 201–212. https://doi.org/10.54503/18291171-2021.14.4-201
Khonina, S. N., Kazanskiy, N. L., Karpeev, S. V., & Butt, M. A. (2020). Bessel beam: Significance and applications —A progressive review. In Micromachines (Vol. 11, Issue 11). MDPI AG. https://doi.org/10.3390/mi11110997
Korolenkoо, P. V. (2020). Wave Beams with a Fractal Structure, Their Properties and Applications: A Literature Review. DOI:10.3103/S1541308X2004007X
Liao, Y., Song, C., Xiang, Y., & Dai, X. (2020). Recent Advances in Spatial Self-Phase Modulation with 2D Materials and its Applications. In Annalen der Physik (Vol. 532, Issue 12). Wiley-VCH Verlag. https://doi.org/10.1002/andp.202000322
Liu, Y., Liu, Z., Hénault, F., Ortiz, A., Frain, M., & Feng, Y. (2023). Fraunhofer diffraction at the two-dimensional quadratically distorted (QD) grating. Optics Express, 31(26), 43522. https://doi.org/10.1364/oe.502016
Liu, Y., Wang, L., Dong, J., Xia, J., Yang, L., & Jin, Y. (2022). Theoretical simulation on Fraunhofer diffraction of arbitrarily shaped aperture. Journal of Physics: Conference Series, 2313(1). https://doi.org/10.1088/1742-6596/2313/1/012026
Navarro, A. L. S., Moreno, Y. T., Castro, M., Rodriguez, H., & Jerez, V. (2021). Fraunhofer diffraction pattern due to spatial self-2 phase modulation of a Gaussian beam by a 3 photorefractive crystal 4. DOI:10.1364/opticaopen.21913146
Ni, J., Wang, C., Zhang, C., Hu, Y., Yang, L., Lao, Z., Xu, B., Li, J., Wu, D., & Chu, J. (2017). Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light: Science and Applications, 6(7). https://doi.org/10.1038/lsa.2017.11
Nurdianto, Safiuddin, L. O., & Eso, R. (2020). Simulasi Persamaan Difraksi Fraunhofer pada Celah Lingkaran dengan Menggunakan Visual Basic for Application (VBA) Spreadsheets Excel. JIPFi Jurnal Penelitian Pendidikan Fisika, 5(3), 215–220. http://ojs.uho.ac.id/index.php/JIPFI
Peters, E., Funes, G., Martínez-León, L., & Tajahuerce, E. (2022). Dynamics of Fractional Vortex Beams at Fraunhofer Diffraction Zone. Photonics, 9(7). https://doi.org/10.3390/photonics9070479
Porfirev, A. P., Kuchmizhak, A. A., Gurbatov, S. O., Juodkazis, S., Khonina, S. N., & Kul’chin, Y. N. (2021). Phase singularities and optical vortices in photonics. Physics-Uspekhi. https://doi.org/10.3367/ufne.2021.07.039028
Pradana, S. D. S., Parno, & Handayanto, S. K. (2017). Pengembangan tes kemampuan berpikir kritis pada materi Optik Geometri untuk mahasiswa Fisika. Jurnal Penelitian Dan Evaluasi Pendidikan, 21(1), 51–64. https://doi.org/10.21831/pep.v21i1.13139
Pratidhina, E., Dwandaru, W. S. B., & Kuswanto, H. (2020). Exploring Fraunhofer diffraction through Tracker and spreadsheet: An alternative lab activity for distance learning. Revista Mexicana de Fisica E, 17(2), 285–290. https://doi.org/10.31349/REVMEXFISE.17.285
Purnama, A. Y., Kuswanto, H., Rani, S. A., Putranta, H., & Winingsih, P. H. (2021). Simulasi Difraksi Fraunhofer Menggunakan Media Spreadsheet dan GNU Octave Sebagai Alternatif Pembelajaran dimasa Pandemi. In Desember 2021 (Vol. 5, Issue 2). http://e-journal.hamzanwadi.ac.id/index.php/kpj/index
Saadati-Sharafeh, F., Borhanifar, A., Porfirev, A. P., Amiri, P., Akhlaghi, E. A., Khonina, S. N., & Azizian-Kalandaragh, Y. (2020). The superposition of the Bessel and mirrored Bessel beams and investigation of their self-healing characteristic. Optik, 208. https://doi.org/10.1016/j.ijleo.2019.164057
Sastypratiwi, H., & Nyoto, R. D. (2020). Analisis data artikel sistem pakar menggunakan metode systematic review. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 6(2), 250-257. DOI:10.26418/jp.v6i2.40914
Setyono, A., Nugroho, S. E., & Yulianti, I. (2016). Analisis Kesulitan Siswa Dalam Memecahkan Masalah Fisika Berbentuk Grafik. In UPEJ (Vol. 5, Issue 3). http://journal.unnes.ac.id/sju/index.php/upej
Siemion, A. (2021). The magic of optics—an overview of recent advanced terahertz diffractive optical elements. In Sensors (Switzerland) (Vol. 21, Issue 1, pp. 1–22). MDPI AG. https://doi.org/10.3390/s21010100
Solano Navarro, A., Moreno, Y. T., Fontecha, J. D., Florez, M., & Jerez, V. (2023). Fraunhofer diffraction pattern of a Gaussian beam passing through a photorefractive crystal Bi12GeO20. Journal of the Optical Society of America B, 40(5), 1156-1161. DOI:10.1364/JOSAB.480944
Stoyanov, L., Zhekova, M., Stefanov, A., Stefanov, I., Paulus, G. G., & Dreischuh, A. (2020). Zeroth- and first-order long range non-diffracting Gauss–Bessel beams generated by annihilating multiple-charged optical vortices. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78613-7
Sun, H. (2025). On the Limitation of Fraunhofer Diffraction Equation. DOI:10.1364/opticaopen.28195289
Suzuki, M. S. (2020). Diffraction by a single slit. Binghamton.
Trisnowati, E., Marwoto, P., Iswari, R. S., & Cahyono, E. (2022). Distribution of the Fraunhofer Diffraction Intensity by a Rectangular Slit Using a Razor Blade. Jurnal Penelitian Pendidikan IPA, 8(3), 1524–1531. https://doi.org/10.29303/jppipa.v8i3.1284
Winarti, P. (2021). Analisis Kesulitan Belajar Mahasiswa dalam Perkuliahan Konsep Dasar IPA Fisika Secara Daring di Masa Pandemi Covid-19. Jurnal Komunikasi Pendidikan, 5(1), 93–107. www.journal.univetbantara.ac.id/index.php/komdik
Yanuarief, C. (2016). Simulasi Pola Difraksi Fraunhofer Untuk Celah Lingkaran Dengan Modifikasi Fungsi Bessel. https://ejournal.uin-suka.ac.id/pusat/integratedlab/article/view/1132
Zapata Valencia, S. I., Gómez-Ramírez, A., Tobon-Maya, H., Buitrago-Duque, C., & Garcia-Sucerquia, J. (2023). Beyond maxima and minima: a hands-on approach for undergraduate teaching of diffraction. 2. https://doi.org/10.1117/12.2662594
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anisa Qoriq Atun Nasiroh, Lira Lira, Intan Purnama Sari, Hamdi Akhsan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.