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Abstract 

This article deals with analytical and numerical methods, particularly 

focusing on their application in solving displacement problem using 

mathematical models. This is a study on the evaluation of material 

damping ratios obtained from experimental data and laboratory tests, an 

essential criterion to reproduce reality in virtual simulations done for 

our computational models. The methodology involves iteratively 

seeking optimal solutions through multiple simulations, providing a 

way to estimate dynamic responses accurately. The article concludes by 

emphasizing the importance of numerical-stepping methods in tackling 

challenging problems in dynamic response analysis. It highlights the 

significance of numerical-stepping methods for handling non-linear 

systems and time-varying excitations in dynamic response analysis. 

This research addresses fundamental issues in the context of applied 

mechanics. In particular, the article is intended to provide a few 

computational algorithms where respective graphs are generated, 

depicting the relationship between time and displacement. Some highly 

efficient numerical procedures can be developed for linear systems by 

interpolating the excitation over each time interval and developing the 

exact solution using a variety of five methods. The numerical results 

obtained are compared with the theoretical solution. Our research 

manages to evaluate the depreciation of the material through the models 

reviewed in the article and gives the results according to the applied 

models by comparing the results and calculating the absolute error. 
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INTRODUCTION 

In this research we use mathematical models in displacement problems associated with the 

comparison of displacement in theoretical concepts and obtained from simulations and experiments. By 

exploring these methods, we gain a deeper understanding of their mathematical foundations and 

practical implications in computational engineering and applied mechanics, marking a significant 

advancement in the field. Analytical solutions of the equation of motion of a single degree of systems is 
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usually not possible if the excitation applied force of ground acceleration varies arbitrarily with time or 

if the system is non-linear (Chopra, 2021; Ningsih, 2024). Such problems can be tackled by numerical-

stepping methods for integration of differential equations (F. Hoxha, 2017; Pangestu, 2024). A vast 

body of literature, including major chapters of several books, exists about these methods for solving 

several types of differential equations that arise in the broad subject area of applied mechanics (Hajrulla 

et al., 2019; Widodo, 2024).  

The literature covers the mathematical formulation of these methods, along with their accuracy, 

convergence, stability, and implementation in computer software (Merkaj et al., 2021; Fadhilah, 2024). 

It provides a rich tapestry of approaches designed to simulate physical systems. The five methods 

selected for comparison in this study have distinct characteristics, advantages, and challenges, as 

highlighted in various research and applications over the years. The Central Difference method is 

widely regarded for its simplicity and effectiveness in temporal integration of dynamic equations. 

Established on finite difference approximations, it offers a direct approach to estimating accelerations 

and velocities at discrete time steps. 

As an extension of the linear interpolation of accelerations between time steps, Linear 

Acceleration Method enhances the accuracy of dynamic simulations by assuming a linear variation of 

acceleration. Average Acceleration Method, often associated with the Newmark-Beta family, assumes 

that acceleration over a time step can be approximated by the average of its values at the beginning and 

end. Its adaptability to various types of dynamic problems can be highlighted. The Constant 

Acceleration Method simplifies calculations by assuming constant acceleration within each time step. 

While this assumption facilitates fast computations, it may compromise the method's applicability to 

systems with rapidly changing accelerations. The Wilson-Theta Method extends the time step by a 

factor theta to enhance stability and accuracy in the integration process. It is particularly beneficial for 

non-linear dynamic analysis, providing a more robust framework for handling large displacements and 

rotations. 

This article, however, only provides a brief overview of a very small number of techniques that 

are very helpful in dynamic response analysis of single degree of freedom systems (Kapçiu et al., 2024; 

Khoirunnisa, Triswati, & Coutas, 2024). By interpolating the excitation throughout each time period 

and generating the exact solution utilizing five methods, several highly efficient numerical algorithms 

can be created for linear systems. For short time intervals, linear interpolation works well (Li et al., 

2020; Apeadido, Opoku-Mensah, & Mensah, 2024). Only a brief presentation of a very few methods 

that are especially useful in dynamic response analysis of single degree of freedom systems is included 

here, however (Großeholz et al., 2015; Setiya Rini et al., 2024). Some highly efficient numerical 

procedures can be developed for linear systems by interpolating the excitation over each time interval 

and developing the exact solution using five methods. If the time intervals are short, linear interpolation 

is satisfactory. The numerical results obtained are compared with the theoretical solution. This 

comparison shows that some numerical methods may predict that the displacement amplitude decays 

with time, although the system is undamped and that the natural period is elongated or shortened (Bilgin 

et al., 2023; Bilgin & Ramadani, 2021).  

The research is intended to provide only the basic concepts underlying these methods and to 

provide a few computational algorithms. Although these would suffice for many practical problems and 

research applications, the reader should recognize that a wealth of knowledge exists on this subject (Li 

et al., 2020; Tyas & Suttiwan, 2023). A consensus can be underscored that no single method universally 

stands out across all dynamic analysis scenarios. Each method's performance is inherently linked to the 

specific characteristics of the problem at hand, including the system's damping, stiffness, and the nature 

of its dynamic loading. The choice of method, therefore, should be informed by a comprehensive 

understanding of both the theoretical foundations of these methods and their practical implications in 

specific applications (Kosovaet al., 2022; Kosova et al., 2023). For linear systems, by interpolating the 

excitation over each time period and generating the exact solution using five different methods, some 

very efficient numerical algorithms can be constructed.  

Linear interpolation has proven particularly advantageous in cases where computational 

simplicity is necessary, allowing for efficient computations that are sufficiently accurate for most 

engineering applications. This is especially useful in scenarios where high-frequency data points are 

available, as shorter intervals provide a more precise approximation of the excitation forces acting on 

the system. Additionally, our study includes methods that utilize various approaches to interpolation, 
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offering a range of options that practitioners can select from based on the unique characteristics of their 

specific applications (Liu et al., 2021; Qodri & Hassan, 2023; Melisa, Nawahdani, & Alam, 2024). 

A critical aspect of numerical displacement analysis lies in comparing numerical results to 

theoretical predictions, which enables a better understanding of each method's accuracy and potential 

limitations. Through these comparisons, we observe that certain numerical methods may produce 

discrepancies in displacement amplitude or frequency. For instance, some techniques may incorrectly 

predict a decay in displacement amplitude over time, even when the system is undamped, or may alter 

the system's natural period, either elongating or shortening it due to inherent numerical biases (Kapçiu 

et al., 2016). These deviations underscore the need for practitioners to understand the strengths and 

limitations of each method, as selecting an unsuitable approach could lead to inaccuracies with 

significant engineering implications (Almufti et al., 2024; Kapçiu et al., 2024). 

In addition to exploring various interpolation techniques, this research also emphasizes the 

impact of damping on displacement analysis. Damping is a crucial factor in mechanical systems, as it 

directly influences both the amplitude and frequency of displacement, effectively controlling the 

system's dynamic response. Accurately modeling damping is essential for creating reliable simulations, 

as even small changes in damping properties can yield substantially different results. In this study, we 

utilize experimentally determined damping ratios to enhance the accuracy of our virtual simulations, 

thereby offering a more realistic representation of system behavior. This approach enables us to validate 

the performance of each numerical method under conditions that closely mirror real-world dynamics 

(Kosova et al., 2024; Rini, Oktavia, & Hong, 2024). 

Our research methodology involves applying five specific numerical techniques to analyze 

dynamic displacement in SDOF systems. These methods are carefully selected based on their 

effectiveness in previous studies and their relevance to dynamic response analysis in applied mechanics. 

By testing these techniques across a range of damping ratios and excitation patterns, we aim to identify 

the most reliable methods for specific scenarios, ultimately providing a framework that practitioners can 

use to select the appropriate approach for their applications (Ahmad et al., 2024; Almufti et al., 2024). 

Graphical representations of displacement over time serve as an essential component of this research, as 

they provide a visual comparison of each method's predictions with theoretical expectations. These 

visualizations offer valuable insights into how each technique manages the effects of damping and time-

varying forces, enabling us to clearly see each approach's advantages and drawbacks (Kosova & Sinaj, 

2021; Mardiati, Alorgbey, & Zarogi, 2024; Setiyani, Panomram, & Wangdi, 2024). This visual analysis 

thus plays a crucial role in evaluating the practical relevance of each method, providing engineers with a 

clearer picture of how each approach may perform in real-world applications. 

The objectives of this study are: (1) to evaluate the accuracy, stability, and convergence of each 

numerical method under different loading conditions and damping scenarios; (2) to provide 

computational algorithms for each technique, including visualizations of displacement over time, to 

facilitate practical understanding; and (3) to establish a selection framework that guides method choice 

based on problem characteristics, such as damping, stiffness, and the nature of dynamic loading. These 

objectives are designed to address the core issues in dynamic response analysis, providing practitioners 

with the tools and knowledge necessary to select the most suitable methods for their needs (Hajrulla, L, 

et al., 2018; Uka et al., 2022; Azis & Clefoto, 2024). 

RESEARCH METHOD 

It was previously observed that the framework of the tower used high-strength steel with large 

modulus of elasticity and dynamic load-resistant properties to reduce structural damping, as well as 

significant vibrational response behaviour (Perez-Martin et al., 2019). Concrete foundations, well 

known for their massive and stiff nature will establish a low frequency response mode of the tower. 

Also, we evaluate the energy dissipation characteristics of those surfaces due to damping under a 

moving load. It provides a unified perspective in the integration of analytic and numerical methods for 

solving differential equations. In this paper a study is conducted to evaluate material damping ratios 

extracted from experimental measurements and assumed in laboratory tests considered as an important 

criterion necessary for the real-life duplication, within virtual computational models. 

An SDF system has the following properties: m =  0.2533 kip − sec2/in, k =  10 kips/
in, Tn =  1 s (ωn  =  6.283 rad/sec), and ξ =  0.10. The response u(t) of this system to p(t) with 

Δt =  0.1 sec subjected to half-cycle as shown in Table 1. 
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Table 1. Given parameters. 

Given Values Units 

m 2.533 kip − s2/in 

k 100 kips/in 

ξ 0.100 or 10% 

 

Central Difference Method 

The central difference method exemplifies one type of this numerical technique used in 

dynamic analysis to approximate motion in time. It is based on central points of the discretized time 

domain acceleration and velocity finite difference approximating formulations. The method then iterates 

to solve for dynamic response by updating the state based off of this approximation at each time step. It 

is a simple and efficient method but needs to be fine tuned on the time step size that results in stability 

without high computing times which makes it best suited for moderately non-linear, damped problems 

(Großeholz et al., 2015). 

[
m

Δt2 +
c

2Δt
] uj+1 = pj − [

m

Δt2 −
c

2Δt
] uj−1 − [k −

2m

Δt2] uj (1) 

 

where,  [
m

Δt2 +
c

2Δt
] = 269.215, [

m

Δt2 −
c

2Δt
] = 237.385 and [k −

2m

Δt2] = −406.6. 

 

269.215uj+1 = pj − 237.385uj−1 + 406.6uj (2) 

 

u̇j =
uj+1 −  uj−1

2∆t
(3) 

u̇j = 5(uj+1 − uj−1) (4) 

Table 2 presents a time-step record of dynamic response parameters for a single system 

responding to varying force (p(t)). This is a plot of time intervals from 0.0 to 1.0 sec on the following 

four values: → avg force p(t), position u(t), velocity u̇(t) and acceleration ü(t). Also included is column 

for theoretical displacement for quick reference.  

The system with this applied force is exerted in one time step, and always can be dispended due 

to the different results of acceleration at each moment. It gives both numerical replies and theoretical 

values, thus enabling it to compare the computed results with its anticipated answers as illustrated in 

Fig. 1. 

Table 2. Displacement provided from Central Difference Method 

Time pj u uj̇  uj̈  u (theoretical) 

0.0 0.0 0.0000 0.000 0.0000 0 

0.1 50.0 0.0000 0.929 18.572 0.0323 

0.2 86.6 0.1857 3.011 23.073 0.2254 

0.3 100.0 0.6022 4.657 9.853 0.624 

0.4 86.6 1.1172 4.379 -15.418 1.0961 

0.5 50.0 1.4780 1.578 -40.591 1.4251 

0.6 0.0 1.4329 -3.086 -52.690 1.3772 

0.7 0.0 0.8609 -6.981 -25.213 0.8683 

0.8 0.0 0.0367 -7.822 8.381 0.1105 

0.9 0.0 -0.7036 -5.659 34.889 -0.5974 

1.0 0.0 -1.0951   -1.0073 
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Figure 1. Comparison of theoretical displacement and displacement from Central Difference Method 

 

Newmark’s Method and Constant Acceleration Method 

This work includes a clear definition of our research targets/subjects (for qualitative) or sample-

population (if quantitative). One or the other should also be written down for method in subject 

selection (qualitative research) and /or sample size technique (Hajrulla, Uka, & Demir, 2023). The 

family of Newmark methods are a subset among these numerical integration algorithms; used for 

solving differential equations in structural dynamics. The Newmark techniques are primarily applied to 

structures of probably dynamic loading, which is treated by seismic force (Hajrulla, Uka, Ali, et al., 

2023). The general procedure of Newmark's method has two coefficients gamma and beta, which affect 

the stability and accuracy thereof (Hajrulla, Bezati, et al., 2018). This can be done in many ways and 

based of that the method by 3 unique examples like Linear Acceleration Method, Spin boxes or 

Seekbar, the Average Acceleration Method, and the Constant Acceleration Method (also known as 

Newmark's Implicit Method) (Perez-Martin et al., 2019; Piña-Flores et al., 2021. 

This method, we will refer to as the Constant Acceleration Method and it assumes a constant 

accleration for an entire time step. Where we have defined the parameters γ = 0.5 β = 0. The method is 

stable and accurate in theory for constant acceleration systems (Mohammadzadeh et al., 2017; Premti et 

al., 2023). Linear Acceleration Method assumes linear increase/decrease of acceleration over the time 

step. It is specified using the parameters γ = 0.5 and β = 1/6 (average acceleration, average 

acceleration). This method assumes the acceleration will be constant during time delta across an average 

of start/end accelerations over each timestep. It is given by γ = 0.5 and β = 1/4.  

This method is unconditionally stable and it provides a good compromise between accuracy and 

computational effort (Falcone et al., 2020; Meskouris et al., 2019). Columns for time, displacement (u j), 

velocity (uj)', acceleration (uj)'', the applied force at the next time step (pj + 1), and theoretical 

displacement facilitate a systematic comparison of numerical results with theoretical predictions at 

specified intervals, illustrating the method's application in evaluating a system's dynamic response, as 

shown in Figure 2. 

üj+1 =
1

m
(pj+1 − kuj − (c + k∆t)u̇j − (c∆t + k

∆t2

2
) üj) (5) 

where                     [
1

m
] = 0.395, [c + k∆t] = 13.183 and [c∆t + k

∆t2

2
] = 0.8183 

 

üj+1 =  0.395(pj+1 − 100uj − 13.183u̇j − 0.8183üj) (6) 

uj+1 = uj + ∆tu̇j +
∆t2

2
üj (7) 

 

uj+1 = uj + 0.1u̇j + 0.005üj (8) 
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u̇j+1 = u̇j + ∆tüj (9) 

 

u̇j+1 = u̇j + 0.1üj (10) 

Table 3. Displacement provided from Constant Acceleration Method 

Time pj u uj̇  uj̈  u (theoretical) 

0.0 0.0000 0.000 0.000 50.0 0 

0.1 0.0000 0.000 19.739 86.6 0.0323 

0.2 0.0987 1.974 27.812 100.0 0.2254 

0.3 0.4352 4.755 16.324 86.6 0.624 

0.4 0.9923 6.388 -13.012 50.0 1.0961 

0.5 1.5660 5.086 -48.475 0.0 1.4251 

0.6 1.8322 0.239 -72.634 0.0 1.3772 

0.7 1.4929 -7.025 -50.112 0.0 0.8683 

0.8 0.5399 -12.036 -6.190 0.0 0.1105 

0.9 -0.6946 -12.655 43.326 0.0 -0.5974 

1.0 -1.7435 -8.322 79.289  -1.0073 

 

 
Figure 2. Comparison of theoretical displacement and displacement from Constant Acceleration Method 

 

Linear Acceleration Method and Averrage Acceleration Method 

Linear Acceleration Method (Table 4) assumes linearly varying acceleration across the time 

step. It is defined by the parameters γ = 0.5 and β = 1/6. Columns sequentially log time, displacement 

(uj), velocity (uj)', acceleration (uj)'', force at the subsequent time step (pj + 1), and a theoretical 

displacement, allowing for an evaluation of system behaviour under dynamic (Annastacia et al., 2024). 

Relate the Average Acceleration Method, the provided code performs several operations to prepare and 

display a plot comparing computed displacement data with theoretical displacement data as a function 

of time. Those methods provide a compromise between complexity and computational demand, ideal 

for cases where acceleration changes moderately over the analysis period and is shown in Figure 3 and 

Figure 4. 

(
6m

∆t2
+

3c

∆t
+ k) uj+1 = pj+1 +

m

∆t2
(6uj + 6u̇j∆t + 2üj∆t2) +

c

∆t
(3uj + 2u̇j∆t +

∆t2

2
üj) (11) 
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Where [(6 ∗  
m

∆t2 + 3 ∗
c

∆t
)  uj] = 1,615.3, [(6∆t ∗

m

∆t2 + 2∆t ∗
c

∆t
) u̇j] = 158.35  

 

 [(
m

∆t2
(2∆t2) +

c

∆t
(

∆t2

2
)) üj] = 5.225 (12) 

u̇j+1 =  −
∆t

2
üj − 2u̇j +

3

∆t
(uj+1 − uj) (13) 

u̇j+1 =  30(uj+1 − uj) −  2u̇j − 0.05üj (14) 

üj+1 = (uj+1 − uj − u̇j∆t −
∆t2

3
üj)

6

∆t2
(15) 

üj+1 =  600(uj+1 − uj) − 60u̇j − 2üj (16) 

 

Table 4. Displacement provided from Linear Acceleration Method 

Time pj u uj̇  uj̈  u (theoretical) 

0.0 0.0000 0.000 0.000 50.0 0 

0.1 0.0291 0.874 17.490 86.6 0.0323 

0.2 0.2119 2.860 22.227 100.0 0.2254 

0.3 0.5896 4.499 10.547 86.6 0.624 

0.4 1.0532 4.382 -12.897 50.0 1.0961 

0.5 1.3861 1.870 -37.334 0.0 1.4251 

0.6 1.3642 -2.531 -50.678 0.0 1.3772 

0.7 0.8967 -6.431 -27.320 0.0 0.8683 

0.8 0.1676 -7.647 2.994 0.0 0.1105 

0.9 -0.5390 -6.053 28.885 0.0 -0.5974 

1.0 -0.9784 -2.519 41.790  -1.0073 

 

 

Figure 3. Comparison of theoretical displacement and displacement from Linear Acceleration Method 
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Figure 4. Comparison of theoretical displacement and displacement from Average Acceleration Method 

 

Willson-Theta Method and Central Difference Method 

Distinguished by the θ parameter, which typically exceeds 1, this method extrapolates the 

acceleration over a time interval θ times the actual time step to enhance the stability and accuracy of the 

response predictions. It is especially beneficial when dealing with larger time steps, as it accounts for 

the variation in loading over the extended period. The method requires recalculating the equilibrium 

equations at each θ-incremented time step, using this to update the displacements, velocities, and 

accelerations in a time-stepped manner, thus allowing for an integrated analysis of a structure's response 

to dynamic loads. 

The summary view of all the curves is shown in Figure 4, highlighting the differences between 

the methods. The Central Difference and Linear Acceleration methods align most closely with the 

theoretical curve, indicating higher accuracy. The Wilson-θ Method also shows good agreement, while 

the Constant and Average Acceleration methods diverge more noticeably, suggesting they are less 

precise for this scenario. 

(
6m

(θ∆t)2
+

3c

θ∆t
+ k) uj+θ =  pj+θ +  

m

(θ∆t)2
(6uj + 6u̇jθ∆t + 2üj(θ∆t)2) +

c

θ∆t
(3uj + 2u̇jθ∆t +

(θ∆t)2

2
üj) (17) 

 

Where [
6m

(θ∆t)2 +
3c

θ∆t
+ k] = 839.13, [(6 ∗  

m

(θ∆t)2 + 3 ∗
c

θ∆t
)  uj] = 739.13,  

[(6θ∆t ∗
m

(θ∆t)2 + 2θ∆t ∗
c

θ∆t
)u̇j] = 107.69 and [(

m

(θ∆t)2 ∗ 2(θ∆t)2 +
c

θ∆t
(

(θ∆t)2

2
)) üj] = 5.305 

 

839.13 uj+θ =  pj+1 +  739.13uj + 107.69u̇j + 5.305üj (18) 

 

üj+θ = (uj+θ − uj − u̇jθ∆t −
(θ∆t)2

3
üj)

6

(θ∆t)2
(20) 

 

üj+θ =  266.7 (uj+θ − uj) − 40u̇j − 2üj (21) 
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u̇j+1 = u̇j +
∆t 

2
(üj + üj+1) (22) 

 

u̇j+1 =  u̇j +  0.05(üj + üj+1) (23) 

Table 5 details the Wilson-θ application in dynamic analysis, providing time-stepped results for 

displacement(uj), velocity(uj̇ ), and acceleration (uj̈ ) along with applied forces (pj) and (pj + θ). 

 

Table 5. Displacement provided from Wilson-Theta Method 

Time u uj̇  uj̈ pj pj+θ uj+θ uj+θ̈  u (theory) 

0.0 0.0000 0.000 0.000 0.0 75.0 0.0894 23.834 0 

0.1 0.0265 0.794 15.890 50.0 104.9 0.3507 22.911 0.0323 

0.2 0.1932 2.617 20.571 86.6 106.7 0.7633 6.181 0.2254 

0.3 0.5418 4.195 10.977 100.0 79.9 1.1802 -19.515 0.624 

0.4 0.9823 4.276 -9.351 86.6 31.7 1.3927 -42.914 1.0961 

0.5 1.3259 2.222 -31.726 50.0 -25.0 1.2227 -52.952 1.4251 

0.6 1.3659 -1.658 -45.877 0.0 0.0 0.7003 -19.412 1.3772 

0.7 1.0001 -5.363 -28.234 0.0 0.0 0.0142 8.080 0.8683 

0.8 0.3630 -6.976 -4.025 0.0 0.0 -0.6010 30.041 0.1105 

0.9 -0.3169 -6.243 18.686 0.0 0.0 -0.9622 40.276 -0.5974 

1.0 -0.8238 -3.655 33.079 0.0    -1.0073 

 

Figure 5 shows the summary view of all curves and how methods differ. The Central Difference 

and Linear Acceleration methods coincide with the theoretical curve most closely—inaccuracies are 

minimal, denoting statistical accuracy. The Wilson-θ Method works also as good or better than the other 

methods, and Constant/Average Acceleration clearly a bit further off this time (in comparison to 

methods). 

 

Figure 5. Comparative graph of all methods used 

 

Algorithm Selection 

A python algorithm to draw a simulation counter graph is proposed above, which reflects the 

comparative behavior of accuracy if it deviates when implemented on real case scenario for physical 

displacement over time. The algorithm will plot two curves, one for time displacement data obtained by 

numerical analysis method and another one for the theoretical displacement and Matplotlib for plotting 

(Zhang et al., 2017; Sun et al., 2023; Naimah, Villamor, & Al Wosabi, 2023). The algorithm is going to 
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process the dataset and organize it in structured arrays using libraries like SciPy and NumPy for data 

organization (Respati et al., 2022; Asmororini, Kinda, & Sen, 2024). 

Finally, it will be a plotting function to map out the graph and give each data point its 

designated mark. The graph plotted in Fig 4, with time on the x-axis and displacement on the y-axis will 

demonstrate this convergence between numerical predictions to theoretical values. The basic idea is that 

this visual comparison will help zero in on the precision of our method, by showing where we get 

curves wrong and right. A close fit indicates a highly accurate numerical method, while significant 

losses represent opportunities for improvement. This approach makes it possible to give an objective 

assessment of the effectiveness of a numerical method and correct its parameters in order for them best 

fit the theoretical model (Sun et al., 2023; Habibi, Jiyane & Ozsen, 2024). 

 

Model Evaluation 

This work is based so simulations and results. The code used during the simulation is a python 

script that plots the displacement as function of time for different numerical methods in a simulation. 

The concept of the code is to let the user select any type or all successive plotting numerical methods 

for comperision. For each method a dictionary of displacements data contains with the keys being other 

and values are database containing displacement value in some time points, calculated from Excel file. 

Here the function plot_method is defined to make the plots using user input. It then uses cubic 

spline interpolation in order to interpolate the displacement data and have smooth curves when plotting 

it (Bezati et al., 2019). If all methods are selected, the function iterates over each method and plots 

interpolated displacement curve with scatter points indicating actual atsatenaspoints. The plot is colored 

and agreeably displayed with different line styles for each of the methods together with a legend at the 

corner giving labels to all methods. If the user picks certain a method, then for that particular choice, it 

will plot the interpolated displacement curve along with theoretical. The script outputs the available 

methods guiding you into choosing before asking for input from a user (Putra & Putra, 2020).     

The next part of the code creates an infinite loop that asks the user to select what method they 

want to plot once plenty of times or exit if it wants. User information is read, then convert to lowercase 

and use for comparison (so that the user’s name matching ignores case) followed by a check of whether 

it matches with any valid method present in displacements dictionary which we plotted using 

MatplotLIb or not (Hernández-Montes et al., 2021; Fernande, Sridharan, & Kuandee, 2024; Syahputra 

& Edwards, 2024). 

Assuring the user inputs a valid entry, and then calling plot method function with the 

corresponding user preferred plotting style to show HeaderInSection in your own Markdown file.     If 

the user enters exit, it exits the look and ending the program. In case of an invalid input, an error 

message is displayed, prompting the user to provide a valid method name or command. This loop 

structure ensures an interactive and iterative process, enabling the user to explore different plots of 

displacement versus time for various numerical methods, as shown in Figure 6. 

 

 
Figure 6. Comparison of theoretical displacement and displacement from each method 
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Stability and Computer Error 

Numerical procedures that lead to bounded solutions if the time step is shorter than some 

stability limits are called conditionally stable procedures. Procedures that lead to bounded solutions 

regardless of the time-step length are called unconditionally stable procedures. The Average 

Acceleration Method is unconditionally stable. The Linear Acceleration Method is stable if Δt/Tn  <
 0.551, and the Central Difference method is stable if Δt/Tn  <  1/π . Obviously, these two methods are 

conditionally stable and preferred to be used to calculate dynamic responses. 

Any numerical solution to the equation of motion has some error. Five numerical methods are 

used to address this problem: Wilson-θ method, average acceleration method, linear acceleration 

method, central difference method, and average acceleration method. The figures produced by applying  

Δt =  0.1Tn are compared with the theoretical solution, which is found by (t) = cosωnt. This 

comparison shows that some numerical methods may predict that the displacement amplitude decays 

with time, although the system is undamped, and that the natural period is elongated or shortened.  

Four of the methods indicate that the displacement amplitude does not decay. Wilson-θ method 

does show a decay in amplitude, suggesting that this method introduces numerical damping into the 

system. The Constant Difference Method introduces the largest period error. In this sense it is the least 

accurate of the methods considered. For Δt/Tn the Central Difference Method and Linear Acceleration 

Method produce the least period elongation when used in excess of their stability limit. These 

approaches are better suited for SDF systems among the ones that are offered because of this feature 

and the fact that there is no amplitude decay.  

The choice of time step also depends on the time variation of the dynamic excitation, in 

addition to the natural vibration period of the system. The time step should also be short enough to 

minimize distortion of the excitation function. A precise time step is essential for describing 

numerically the highly irregular earthquake ground acceleration observed during seismic events. 

RESULTS AND DISCUSSION 

Our research presents the experimental results passing through used numerical methods. We use 

the comparisons of methods for time and dicplacement.  The numerical approaches depicted include the 

Central Difference Method, Constant Acceleration Method, Average Acceleration Method, Linear 

Acceleration Method, and Wilson-Method. By experimenting and simulating, getting graphic results 

and comparing them, we give a very clear idea about the methods used and compare them, analyzing 

and drawing the appropriate conclusions of our research. Figure 7 shows a comparison between a 

theoretical solution and various numerical techniques used to approximate the time-displacement 

relationship of a physical system.  

The methods displayed include the Central Difference Method, Constant Acceleration Method, 

Average Acceleration Method, Linear Acceleration Method, and Wilson-θ Method. Each method 

produces a curve that oscillates and trends similarly to the theoretical solution, with varying degrees of 

accuracy The theoretical solution is well captured by the Central Difference Method at all stages, 

confirming a good accuracy. The Constant Acceleration Method starts instances of divergence that get 

starker as time goes on. The Average and Linear Acceleration Methods show intermediate performance 

with slight deviations from the theoretical curve (Dhamo et al., 2024).  

The Wilson-θ Method also tracks the theoretical solution closely, although with small 

differences. All methods seem to converge towards the theoretical solution at the final time point, 

suggesting that despite the differences in calculation throughout, they may have similar end-point 

accuracy. 
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Figure 7. Comparative graph of all methods used, generated in Python 

 

From the analysis used, it appears that the Central Difference Method closely follows the 

theoretical solution throughout the range, with slight deviations at the peaks and troughs. The Linear 

Acceleration Method show a similar degree of accuracy to the Central Difference Method, with minor 

variations that could be due to the simplifications inherent in this method. The Constant and Average 

Acceleration Methods exhibits a bit more deviation from the theoretical solution, especially in the 

peaks, suggesting less accuracy in modelling acceleration changes over time. Lastly, the Wilson-θ 

Method provides a reasonable approximation but with more noticeable deviations than the Central 

Difference Method, which may be due to its specific assumptions and calculations. 

The loop structure ensures an interactive and iterative process, enabling the user to explore 

different plots of displacement versus time for various numerical methods, as shown in Figure 8. 

 
Figure 8. Comparison of theoretical displacement and displacement from methods from Random 

Generations in Python 

 

In the context of this paper, which researches into numerical procedures for dynamic analysis, 

methods stand out for their ability to meet the key requirements of convergence, stability, and accuracy. 

A little above we explained and compared all methods used. The used code defines a procedure for 
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comparing computed and theoretical displacement of an object over time using interpolation to create 

smooth curves. Arrays of time points and corresponding displacement values are first established; cubic 

spline interpolation then generates smooth trajectories over a finely spaced time series. In the resulting 

plot titled “Linear Acceleration Method,” this process visualizes the displacement data (solid line) 

against the theoretical prediction (dashed line) and marks the original dataset with coloured scatter 

points blue for computed and orange for theoretical data. 

The code provides a flexible way to visualize the displacement versus time for different 

numerical methods, allowing for easy comparison and analysis. Unique to the Wilson-θ method are the 

extrapolated force values (pj + θ) and corresponding response predictions (uj + θ, u̇j + θ) at a future 

time (θ times the actual time step), which are used to enhance the accuracy of the response calculation. 

Theoretical displacement serves as a reference for validating the numerical method against expected 

theoretical values, essential for verifying the reliability of the Wilson-θ method's predictions. 

The Central Difference and Linear Acceleration methods align most closely with the theoretical 

curve, indicating higher accuracy. The Wilson-θ Method also shows good agreement, while the 

Constant and Average Acceleration methods diverge more noticeably, suggesting they are less precise 

for this scenario. While each method offers a decent approximation of the theoretical solution, the 

Central Difference Method and Linear Acceleration Method seems to align most consistently with the 

theoretical solution, suggesting it may be more reliable for applications where accuracy is principal. 

Nevertheless, the selection of a method in practice would depend on the specific requirements of the 

problem at hand, including considerations of computational efficiency and the nature of the data. 

To the next future, the final selection of the most suitable numerical method should be guided 

by the specific context of the dynamic problem, including the nature of the excitation, system 

properties, and the balance between computational resources and the requisite precision of the results. 

CONCLUSION 

This study provides a comparative analysis of various numerical methods for calculating 

displacement over time in dynamic systems, evaluating their accuracy against theoretical solutions. The 

results demonstrate that the Central Difference Method is a robust and reliable approach, closely 

approximating theoretical displacement values. The Wilson-θ Method, known for its stability under 

suitable conditions, also proved effective despite minor deviations from theoretical predictions. The 

Newmark Method, in its different variations (Linear, Average, and Constant Acceleration), balanced 

accuracy and computational efficiency, making it a flexible choice for time-step-sensitive problems. 

Additionally, utilizing Python for numerical simulations enhanced the visualization of results, providing 

a clearer interpretation of input parameters and assumptions. This highlights the advantage of 

computational tools in improving the efficiency and accuracy of numerical modeling in structural 

dynamics. The findings of this study have significant implications for structural analysis and 

engineering applications. The Central Difference Method and Linear Acceleration Method 

demonstrated the highest accuracy, making them preferable choices for simulations requiring precision 

in dynamic response analysis. The results emphasize the need for method selection based on problem-

specific requirements, such as stability, accuracy, and computational efficiency. Future research should 

explore the application of these methods in nonlinear dynamic systems, assess their performance under 

varying boundary conditions, and integrate machine learning techniques to enhance computational 

efficiency. Furthermore, developing adaptive numerical techniques that optimize accuracy based on 

real-time simulation constraints could further improve predictive capabilities in engineering 

simulations. 
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