Analysis of Students' Conceptual Understanding of Biology Material Based on STEM-Based Learning

(Analisis Pemahaman Konsep Mahasiswa Pada Materi Biologi Berdasarkan Pembelajaran Berbasis STEM)

Authors

  • Devie Novallyan UIN Sulthan Thaha Saifuddin Jambi
  • Dwi Gusfarenie UIN Sulthan Thaha Saifuddin Jambi
  • Reny Safita UIN Sulthan Thaha Saifuddin Jambi

DOI:

https://doi.org/10.22437/biodik.v9i4.25333

Abstract

The main objectives of biology learning are improving the mastery of concepts, understanding biology concepts in depth and applying them in problem solving processes. The aims of this research were to design a STEM-based Biology practicum module and evaluate its effectiveness on students' conceptual understanding. The method in this research followed a quasi-experimental research procedure, with a one group pretest and posttest design. This aims to obtain more information in understanding students' concepts after going through STEM-based biology practicum learning experiences. The research subjects were 36 junior high school students. Analysis of students' understanding of concepts is based on statistical descriptive data, normality test and paired t test and N-Gain. Based on the results of the research indicate that there is a significant effect of the application of STEM-based practicum modules on conceptual understanding. Besides that the N-Gain data shows an increase in students' understanding of concepts after being taught with the STEM-based biology practicum module. In this research, it has not specifically explained the model that is applied together with the STEM-based approach. It is important to do further research to design STEM-based learning with certain learning models.

Key words: Conceptual understanding, Biology, STEM

Abstrak. Tujuan utama pembelajaran biologi adalah meningkatkan penguasaan konsep, memahami konsep biologi secara mendalam dan menerapkannya dalam proses pemecahan masalah. Penelitian ini bertujuan untuk merancang modul praktikum Biologi berbasis STEM dan mengevaluasi keefektifannya terhadap pemahaman konsep siswa. Metode dalam penelitian ini mengikuti prosedur penelitian eksperimen semu, dengan one group pretest and posttest design. Hal ini bertujuan untuk memperoleh informasi lebih dalam memahami konsep siswa setelah melalui pengalaman pembelajaran praktikum biologi berbasis STEM. Subyek penelitian adalah 36 siswa SMP. Analisis pemahaman konsep siswa berdasarkan data statistik deskriptif, uji normalitas dan uji t berpasangan dan N-Gain. Berdasarkan hasil penelitian menunjukkan bahwa terdapat pengaruh yang signifikan penerapan modul praktikum berbasis STEM terhadap pemahaman konsep. Selain itu data N-Gain menunjukkan adanya peningkatan pemahaman konsep siswa setelah diajarkan dengan modul praktikum biologi berbasis STEM. Dalam penelitian ini belum secara khusus menjelaskan model yang diterapkan bersamaan dengan pendekatan berbasis STEM. Penting dilakukan penelitian lebih lanjut untuk merancang pembelajaran berbasis STEM dengan model pembelajaran tertentu

Kata kunci: Pemahaman Konsep, Biologi, STEM

Downloads

Download data is not yet available.

References

Afriana, J., Permanasari, A., & Fitriani, A. (2016). Project based learning integrated to stem to enhance elementary school’s students scientific literacy. Jurnal Pendidikan IPA Indonesia, 5(2), 261–267. https://doi.org/10.15294/jpii.v5i2.5493

Aktan, D. C. (2013). Investigation of students’ intermediate conceptual understanding levels: The case of direct current electricity concepts. European Journal of Physics, 34(1), 33–43. https://doi.org/10.1088/0143-0807/34/1/33

Astuti, E., & Nurcahyo, H. (2019). Development of Biology Learning Media Based on Adobe Flash to Increase Interest and Conceptual Understanding. Journal of Physics: Conference Series, 1241(1), 012050. https://doi.org/10.1088/1742-6596/1241/1/012050

Borrego, M., & Henderson, C. (2014). Increasing the use of evidence-based teaching in STEM higher education: A comparison of eight change strategies. Journal of Engineering Education, 103(2), 220–252. https://doi.org/10.1002/jee.20040

Bruckermann, T., Aschermann, E., Bresges, A., & Schlüter, K. (2017). Metacognitive and multimedia support of experiments in inquiry learning for science teacher preparation. International Journal of Science Education, 39(6), 701–722. https://doi.org/10.1080/09500693.2017.1301691

Cohen, L, Manion, L. & Morrison, K. 2007. Research Methods in Education. New York: Routledge

Chesky, N. Z., & Wolfmeyer, M. R. (2015). Philosophy of STEM Education. In Philosophy of STEM Education. https://doi.org/10.1057/9781137535467

Crippen, K. J., & Archambault, L. (2012). Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education. Computers in the Schools, 29(1–2), 157–173. https://doi.org/10.1080/07380569.2012.658733

Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics - Physics Education Research, 10(2), 1–58. https://doi.org/10.1103/PhysRevSTPER.10.020119

Dolan, E., & Grady, J. (2010). Recognizing students’ scientific reasoning: A tool for categorizing complexity of reasoning during teaching by inquiry. Journal of Science Teacher Education, 21(1), 31–55. https://doi.org/10.1007/s10972-009-9154-7

Djulia, E., Hasruddin., Simatupang, W. A. Z., Sipayung, W. W. W. B. M., Aryeni., Amrizal., Rezeqi, H. S. S., Pratiwi, N., Purnama, D. (2020). Evaluasi Pembelajaran Biologi. Medan: Yayasan Kita Menulis

Freeman, E. (2012). The design and implementation of a career orientation course for undergraduate majors. College Teaching, 60(4), 154–163. https://doi.org/10.1080/87567555.2012.669424

Hake, R. 1998. Interactive-Engagement Versus Traditional Methods: A Six-Thousand-Student Survey Of Mechanics Test Data For Introductory Physics Courses. American Journal of Physics, (Online) 66 (1), (http://scitation.aip.org) diakses 18 Februari 2016.

Ismail, I., Permanasari, A., & Setiawan, W. (2016). Stem virtual lab: An alternative practical media to enhance student’s scientific literacy. Jurnal Pendidikan IPA Indonesia, 5(2), 239–246. https://doi.org/10.15294/jpii.v5i2.5492

Jang, H. (2016). Identifying 21st Century STEM Competencies Using Workplace Data. Journal of Science Education and Technology, 25(2), 284–301. https://doi.org/10.1007/s10956-015-9593-1

Kete, R., Horasan, Y., & Namdar, B. (2012). Investigation of the Conceptual Understanding Difficulties in 9 th Grade Biology Books About Cell Unit 9 . Sınıf Biyoloji Ders Kitaplarında Hücre Konusundaki Kavramsal Anlama Güçlüklerinin Tespiti. Elementary Education Online, 11(1), 95–106.

Kim, H. (2011). Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology. Journal of Science Education and Technology, 20(6), 803–814. https://doi.org/10.1007/s10956-011-9334-z

Krathwohl, D. R. (2002). A Revision of Bloom ’ s Taxonomy : An Overview. 41(4).

Merhar, V. K., PlaninÅ¡iÄ, G., & Cepic, M. (2009). Sketching graphs—an efficient way of probing students’ conceptions. European Journal of Physics, 30, 163–175. https://doi.org/10.1088/0143-0807/30/1/017

Morgan, G. A., Lecch, N. L., Gloecker, G. W., & Barret, K. C. 2004. SPSS For Introductory Statistics: Use And Interpretasi. London : Lawrence Erlbaum Associates.

Miles, M.B., Huberman, A.M. 1994. Qualitative Data Analysis. London : Sage Publications.

Micari, M., & Pazos, P. (2012). Connecting to the Professor: Impact of the Student–Faculty Relationship in a Highly Challenging Course. College Teaching, 60(2001), 41–47. https://doi.org/10.1080/87567555.2011.627576

Mulyani, T. (2019). The Movement of STEM Education in Indonesia: Science Teachers’ Perspectives. Jurnal Pendidikan IPA Indonesia, 8(3), 453–460. https://doi.org/10.15294/jpii.v8i3.19252

Mutakinati, L., Anwari, I., & Yoshisuke, K. (2018). Analysis of students’ critical thinking skill of middle school through stem education project-based learning. Jurnal Pendidikan IPA Indonesia, 7(1), 54–65. https://doi.org/10.15294/jpii.v7i1.10495

Ngabekti, S., Prasetyo, A. P. B., Hardianti, R. D., & Teampanpong, J. (2019). The development of stem mobile learning package ecosystem. Jurnal Pendidikan IPA Indonesia, 8(1), 81–88. https://doi.org/10.15294/jpii.v8i1.16905

Nieminen, P., Savinainen, A., & Viiri, J. (2012). Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning. Physical Review Special Topics - Physics Education Research, 8(1), 010123. https://doi.org/10.1103/PhysRevSTPER.8.010123

Nugroho, O. F., Permanasari, A., & Firman, H. (2019). The movement of stem education in Indonesia: Science teachers’ perspectives. Jurnal Pendidikan IPA Indonesia, 8(3), 417–425. https://doi.org/10.15294/jpii.v8i3.19252

Ogle, D., Klemp, R., McBride, B., Clements, D. H., Sarama, J., นคเรศ รังควัต., Of, D., To, E. P. O. R. T., Den, P. R. E. S. I., Ion, a T., Nol, E. C. H., To, O. G. Y., Hca, L. T., Ns, E. R. I. C. a, Friedl, J. E. F., Designer, C., Freedman, E., Cohen, S., Lawson, A. E., … English, W. (2010). I Mproving Undergraduate Instruction in Science , Technology ,. In Teachers’ Professional Development and the Elementary Mathematics Classroom: Bringing Understandings to Light (Issue December). http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf%0Ahttp://www.unimelb.eblib.com.au.ezp.lib.unimelb.edu.au/EBLWeb/patron?target=patron&extendedid=P_306608_0&

Park, L. (2016). A study of integration: The role of sensus communis in integrating disciplinary knowledge. In Interdisciplinary Pedagogy for STEM: A Collaborative Case Study (pp. 19–36). https://doi.org/10.1057/978-1-137-56745-1_2

Punyasettro, S., & Yasri, P. (2021). A Game-Based Learning Activity to Promote Conceptual Understanding of Chordates’ Phylogeny and Self-Efficacy to Learn Evolutionary Biology. European Journal of Educational Research, 10(4), 1937–1951. https://doi.org/10.12973/eu-jer.10.4.1937

Rahmat, I., & Chanunan, S. (2018). Open Inquiry in Facilitating Metacognitive Skills on High School Biology Learning: An Inquiry on Low and High Academic Ability Irwandi. International Journal of Instruction, 11(4), 593–606.

Reese-Durham, N. F. (2014). A Discussion Strategy for an Online Class. College Teaching, 62(1), 42–43. https://doi.org/10.1080/87567555.2013.792766

Reinke, N. B., Kynn, M., & Parkinson, A. L. (2019). Conceptual understanding of osmosis and diffusion by Australian first-year biology students. International Journal of Innovation in Science and Mathematics Education, 27(9), 17–33. https://doi.org/10.30722/ijisme.27.09.002

Roth, W. M. (2014). Uncertainty and graphing in discovery work: Implications for and applications in STEM education. In Uncertainty and Graphing in Discovery Work: Implications for and Applications in STEM Education. https://doi.org/10.1007/978-94-007-7009-6

Sadeh, I., & Zion, M. (2012). Which Type of Inquiry Project Do High School Biology Students Prefer: Open or Guided? Research in Science Education, 42(5), 831–848. https://doi.org/10.1007/s11165-011-9222-9

Smithenry, D. W. (2010). Integrating guided inquiry into a traditional chemistry curricular framework. International Journal of Science Education, 32(13), 1689–1714. https://doi.org/10.1080/09500690903150617

Srisawasdi, N., & Panjaburee, P. (2015). Exploring effectiveness of simulation-based inquiry learning in science with integration of formative assessment. Journal of Computers in Education, 2(3), 323–352. https://doi.org/10.1007/s40692-015-0037-y

sutopo. (2016). Students’ Understanding Of Fundamental Concepts Of Mechanical Wave. Jurnal Pendidikan Fisika Indonesia, 12(1), 41–53. https://doi.org/10.15294/jpfi.v12i1.3804

Tanner, K., & Allen, D. (2005). Approaches to biology teaching and learning: Understanding the wrong answers-teaching toward conceptual change. Cell Biology Education, 4(SUMMER), 112–117. https://doi.org/10.1187/cbe.05-02-0068

Tecson, C. M. B., Salic-Hairulla, M. A., & Soleria, H. J. B. (2021). Design of a 7E model inquiry-based STEM (iSTEM) lesson on digestive system for Grade 8: An open-inquiry approach. Journal of Physics: Conference Series, 1835(1). https://doi.org/10.1088/1742-6596/1835/1/012034

Uzzo, S. M., Graves, S. B., Shay, E., Harford, M., & Thompson, R. (2018). Pedagogical Content Knowledge in STEM: Research to Practice. In Advances in STEM Education.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5

Wulandari, A., Maridi, Sutarno, & Ramli, M. (2019). Learning progression on conceptual understanding of biology: A systematic review. AIP Conference Proceedings, 2194(December), 020142. https://doi.org/10.1063/1.5139874

Yürük, N., Selvi, M., & Yakişan, M. (2011). The effect of Metaconceptual Teaching Activities on Pre-Service Biology Teachers’ Conceptual Understanding about Seed Plants. Educational Sciences: Theory & Practice, 11(1), 459–464.

Zabrucky, K. M., & Bays, R. B. (2011). Helping Students Know What They Know and Do Not Know. College Teaching, 59(3), 123. https://doi.org/10.1080/87567555.2010.511314

Zaniewski, A. M., & Reinholz, D. (2016). Increasing STEM success: a near-peer mentoring program in the physical sciences. International Journal of STEM Education, 3(1). https://doi.org/10.1186/s40594-016-0043-2

Young, H. D. & Freedmen. (2002). Fisika Universitas. Jakarta: Erlangga

Downloads

Published

2023-12-28

How to Cite

Novallyan , D., Gusfarenie, D., & Safita, R. (2023). Analysis of Students’ Conceptual Understanding of Biology Material Based on STEM-Based Learning: (Analisis Pemahaman Konsep Mahasiswa Pada Materi Biologi Berdasarkan Pembelajaran Berbasis STEM). BIODIK, 9(4), 46-55. https://doi.org/10.22437/biodik.v9i4.25333