ANALISIS LAGRANGIAN NULL NONSTANDAR DAN FUNGSI GAUGE UNTUK HUKUM INERSIA NEWTON : SEBUAH REVIEW

Authors

  • Amelia A.P Ambot Universitas Nusa Cendana
  • Herry F. Lalus Universitas Nusa Cendana
  • Hartoyo Yudhawardana Universitas Nusa Cendana

DOI:

https://doi.org/10.22437/jop.v9i1.25909

Keywords:

lagrangian null nonstandar, lagrangian null standar, fungsi gauge invarian aksi, hukum inersia newton, formalisme lagrangian

Abstract

This paper describes a review of a journal entitled 'Nonstandard Null Lagrangians and Gauge Functions for Newtonian Law of Inertia' which discusses Nonstandard Lagrangian Null solutions for Newton's Law of Inertia. The purpose of this study is to present in detail the Lagrangian Formalism method for generating Nonstandard Lagrangian Null and its Gauge function for Newton's Law of Inertia, as well as the role of action invariant in generating Lagrangian Null and Exact Gauge functions, by deriving a one-dimensional oscillator arm using the basic Lagrangian equations. The Nonstandard Null Lagrangian is derived from the Nonstandard Lagrangian, then the two Lagrangian Null are entered into the action invariant to make it Exact, after the Nonstandard Lagrangian Null is declared Exact, it is substituted into  which represents Newton's Law of Inertia. The results of this research show that an Exact Nonstandard Lagrangian Null can be generated by making the Gauge Function Invariant, so that the first Nonstandard Lagrangian Null and Gauge Function for Newton's Law of Inertia are obtained.

Downloads

Download data is not yet available.

References

Almén, A. (2020). Helmholtz Conditions and The Inverse Problem for Lagrangian Mechanics.Karlstad University Faculty Of Health, Science and Technology.

Arnold, V. (1978). Mathematical Methods of Classical Mechanics. New York, NY, USA: Springer.

Cline, D. (2022). Variational Principles In Classical Mechanics. California: University Of Rochester.

Das , R., & Musielak, Z. (2022). General Null Lagrangians and Their Novel Role in Classical Dynamics. Department of Physics and Earth Space Science, The University of Indianapolis, Indianapolis, IN 46227, USA.

Davachi, N., & Musielak , Z. E. (2019). Generalized Non-Standard Lagrangians. Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA.

Doughty, N. (1990). Lagrangian Interaction. Westview Press. p. 449.

Landau, L., & Lifshitz, E. ( 1972). Mechanics and Electrodynamics . Pergamon: Oxford.

Gauthier, R. (2017). Inertia Explained. Santa Rosa Junior College.

Gianquinta, M., & Hilbedbrandt, S. (1996). Calculus Of Variations I. Berlin : Springer.

J.P. Gauthier, d. (2010). A Biomechanical Inactivation Principle. Proceedings of the Steklov Institute of Mathematics. 93–116.

Musielak , Z., Davachi , N., & Maria. (2020). Special Functions of Mathematical Physics: A Unified. Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA;.

Musielak, Z. (2009). General Conditions For The Existence Of Non-Standard Lagrangians For Dissipative Dynamical Systems. Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA.

Musielak, Z. E. (2008). Standard And Non-Standard Lagrangians For Dissipative Dynamical Systems With Variable Coefficients. Journal Of Physics A: Mathematical and Theoretical.

Musielak, Z. E. (2020). Null Lagrangians and Invariance of Action: Exact. Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA.

Musielak, Z. E. (2021). Nonstandard Null Lagrangians and Gauge Functions for Newtonian Law of Inertia. Department of Physics, The University of Texas at Arlington, Arlington, TX 76019,USA.

Penrose, R. (2004). For An Alternative Formulation In Terms O

f Symmetries Of The Lagrangian Density.

P. Caldirola, â€Forze non conservative nella meccanica quantistaâ€, Nuovo Cim., 18, 393, 1941.

Perkins, D. H. (1982). Introduction To High-Energy Physics. Addison-Wesley.

Pickering, A. (1984). Conrtructing Quarks. Universty Of Chicago Press.

Rizzuti, B., & Vasconcelos Jr, G. (2022). Classical Gauge Principle-From Field Theories to Classical Mechanics. Departamento de F´ısica, Universidade Federal de Juiz de Fora, MG, Brazil.

Segovia, A., Vestal , L., & Musielak, Z. (2022). Nonstandard Null Lagrangians and Gauge Functions and Dissipative Forces in Dynamics. Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA.

Sudiarta, I.W.(2012).Mekanika Kuantum. Mataram: Program Studi Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mataram.

Tipler, P.(1998). Fisika untuk Sains dan Teknik, Edisi ketiga Jilid I. Jakarta: Erlangga.

Verlinde, E. (2011). On The Origin Of Gravity And The Laws Of Newton. Institute for Theoretical Physics, University of Amsterdam,Valckenierstraat 65, 1018 XE, Amsterdam, The Netherlands.

Vilmala, B. K. (2020). Revolusi Saintifik dalam Perkembangan Mekanika. Jurnal Filsafat Indonesia.

Downloads

Published

2023-11-02

How to Cite

Ambot, A. A., Lalus, H. F., & Yudhawardana, H. (2023). ANALISIS LAGRANGIAN NULL NONSTANDAR DAN FUNGSI GAUGE UNTUK HUKUM INERSIA NEWTON : SEBUAH REVIEW. JOURNAL ONLINE OF PHYSICS, 9(1), 6-14. https://doi.org/10.22437/jop.v9i1.25909