CLASSIFICATION OF LUNG DISEASE ON X-RAY IMAGES BASED ON GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) FEATURE EXTRACTION AND BACKPROPAGATION NEURAL NETWORK USING PYTHON GUI

Authors

  • Debby Mustika Rani Universitas Jambi
  • Frastica Deswardani Universitas Jambi
  • Yoza Fendriani UNIVERSITAS JAMBI

DOI:

https://doi.org/10.22437/jop.v9i2.32806

Keywords:

Backpropagation Neural Network, Feature Extraction, GLCM, Image Classification, Phyton GUI

Abstract

This research aims to develop an automated diagnostic system for classifying lung diseases in X-ray images based on feature extraction using the Gray Level Co-occurrence Matrix (GLCM) with a Backpropagation Artificial Neural Network employing a Python GUI. In this study, 200 lung image data were utilized, divided into four classes with 50 data points each. The four categories of image classes are normal lungs, Pneumonia, Tuberculosis, and Covid-19. The training and testing data were split in a 92:8 ratio, resulting in 184 training data and 16 testing data. The parameters include four input layers, eight hidden layers, two output layers, alpha 0.8, 2000 iteration, and target error = 0.0001. Then, it continued with feature extraction using the GLCM to obtain texture characteristics in lung images. In the training stage, the best results were obtained in iteration 2000 with a Mean Squared Error of 0.005% and a calculated time of 167.319 seconds. At the testing stage, a reasonably high accuracy was obtained, 93.75%, with a calculated time of 0.014 seconds. This result indicates that the method can prove lung images.

Downloads

Download data is not yet available.

References

Alcantara, J. H., & Chen, J. S. (2019). Neural networks based on three classes of NCP-functions for solving nonlinear complementarity problems. Neurocomputing, 359, 102-113.

Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., & Mougiakakou, S. (2016). Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE transactions on medical imaging, 35(5), 1207–1216.

Asery, R., Sunkaria, R. K., Sharma, L. D., & Kumar, A. (2016, June). Fog detection using GLCM-based features and SVM. In 2016 Conference on Advances in Signal Processing (CASP) (pp. 72-76).

Depinta, L., dan Abdullah, Z. 2017. Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Deteksi Penyakit Tuberculosis (TB) Paru dari Citra Rontgen. Jurnal Fisika Unand. 6(1).

Gonzalez, R. C. (2009). Digital image processing fourth edition. New York: Pearson Publisher.

Hadi, H. P., & Rachmawanto, E. H. (2022). Ekstraksi Fitur Warna Dan Glcm Pada Algoritma Knn Untuk Klasifikasi Kematangan Rambutan. Jurnal Informatika Polinema, 8(3), 63-68.

Hamid, A. (2019). Klasifikasi Penyakit Tuberculosis dan Pneumonia pada Paru-Paru Manusia Berdasarkan Citra Chest X-Ray Menggunakan Convolutional Neural Network (Bachelor's thesis, Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta).

Kshirsagar, P. R., Yadav, A. D., Joshi, K. A., Chippalkatti, P., & Nerkar, R. Y. (2020). Classification and detection of brain tumor by using GLCM texture feature and ANFIS. J. Res. Image Signal Processing, 5, 15-31.

Listia, R., dan Harjoko, A. 2014. Klasifikasi Massa pada Citra Mammogram Berdasarkan Gray Level Co-occurrence Matrix (GLCM). IJCCS (Indonesian Journal of Computing and Cybernetics Systems). 8(1).

Maulida, A., Nurhidayah, N., Fendriani, Y., & Haryono, H. (2022). Segmentasi Citra Mammogram Untuk Deteksi Dini Kanker Payudara Dengan Menggunakan Metode Otsu Thresholding. Jurnal Fisika Unand, 11(2), 180-186.

Putra, H. R. W., & Yuhandri, Y. (2021). Identifikasi Penderita COVID-19 Berdasarkan Chest X-ray Menggunakan Algoritma Jaringan Syaraf Tiruan Backpropagation. Jurnal Sistim Informasi dan Teknologi, 197-202.

Wadi, H. 2021. Klasifikasi Citra dengan Jaringan Syaraf Tiruan Backpropagation menggunakan Python GUI. Nusa Tenggara : Turida Publisher.

Wang, L., Zeng, Y., & Chen, T. (2015). Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Systems with Applications, 42(2), 855-863.

Wu, L., Yang, Y., Maheshwari, M., & Li, N. (2019). Parameter optimization for FPSO design using an improved FOA and IFOA-BP neural network. Ocean Engineering, 175, 50–61.

Downloads

Published

2024-04-30

How to Cite

Rani, D. M., Deswardani, F. ., & Fendriani, Y. (2024). CLASSIFICATION OF LUNG DISEASE ON X-RAY IMAGES BASED ON GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) FEATURE EXTRACTION AND BACKPROPAGATION NEURAL NETWORK USING PYTHON GUI. JOURNAL ONLINE OF PHYSICS, 9(2), 80-86. https://doi.org/10.22437/jop.v9i2.32806