Algoritma Arnoldi untuk Penyelesaian Masalah Nilai Eigen Matriks Raksasa

Authors

  • Khairul Alim Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Jambi, Indonesia
  • Nurul Pratiwi Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Jambi, Indonesia
  • Cut Multahadah Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Jambi, Indonesia
  • Corry Sormin Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Jambi, Indonesia
  • Fernando Mersa Putra Program Studi Teknik Lingkungan, Fakultas Sains dan Teknologi, Universitas Jambi, Indonesia

Keywords:

Large-scale matrice, Arnoldi algorithm, Hessenberg, Eigenvalue computation, Numerical method

Abstract

The computation of eigenvalues for large-scale matrices is a crucial task in various scientific and engineering domains. This research focuses on the performance of numerical techniques, particularly those utilizing Hessenberg matrices, in solving eigenvalue problems. We investigate the efficacy of these methods and their implementation on modern computational platforms. Our study reveals that increasing the size of the Hessenberg matrix significantly enhances the accuracy of eigenvalue approximations. Through extensive simulations and performance evaluations, we demonstrate that larger Hessenberg matrices provide more precise eigenvalue solutions, underscoring the importance of matrix dimension in the computational process. These findings offer valuable insights for optimizing eigenvalue computations in large-scale applications.

Downloads

Download data is not yet available.

References

Alim, K., Rahmawati, A., & Matsaany, B. (2023). Formation of Optimal Portfolio on JII Stock using Sharpe, Treynor, and Jensen Indices during the Period of 2018-2023. Jurnal Matematika, Statistika Dan Komputasi/Jurnal Matematika Statistik Dan Komputasi, 19(3), 593–601. https://doi.org/10.20956/j.v19i3.26354

Barrante, J. R. (2016). Applied Mathematics for Physical Chemistry. Waveland Press.

Boas, M. L. (2015). Mathematical methods in the physical sciences. Wiley.

Riani, I., Kusumastuti, N., & Kiftiah, M. (2015). Penyelesaian Masalah Nilai Eigen untuk Persamaan Diferensial Sturm-Lioville dengan Metode Numerov. Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, 4(03). https://doi.org/10.26418/bbimst.v4i03.13282

Saad, Y. (2011). Numerical Methods for Large Eigenvalue Problems. SIAM.

Voss, H. (2004). An Arnoldi Method for Nonlinear Eigenvalue Problems. BIT Numerical Mathematics, 44(2), 387–401. https://doi.org/10.1023/b:bitn.0000039424.56697.8b

Zulkipli, Z. (2023). Hubungan antara Kemampuan Matematika dengan Keterampilan Pemrograman. Bangkit Indonesia/Jurnal Ilmiah Bangkit Indonesia, 12(2), 59–64. https://doi.org/10.52771/bangkitindonesia.v12i2.251

Downloads

Published

2024-04-30

How to Cite

Alim, K., Pratiwi, N., Multahadah , C. ., Sormin , C. ., & Putra, F. M. . (2024). Algoritma Arnoldi untuk Penyelesaian Masalah Nilai Eigen Matriks Raksasa. Mathematical Sciences and Applications Journal, 4(2), 92-100. Retrieved from https://mail.online-journal.unja.ac.id/msa/article/view/36182