Aplikasi Algoritma Euclidean dalam Produksi Jagung di Pulau Jawa
DOI:
https://doi.org/10.22437/msa.v5i1.38080Keywords:
Euclidean algorithm, Gcd, Lcm, ProductionAbstract
Corn farming on the island of Java plays a crucial role in meeting the nation's food needs. However, variations in land conditions across provinces in Java result in differing production levels. This disparity affects the supply of corn in the market, and the selling price often does not align with farmers' expectations. Therefore, this article aims to determine the optimal timing for distributing corn, particularly on the island of Java, using the Euclidean algorithm. The Euclidean algorithm is used to calculate the greatest common divisor (gcd), which in turn is applied to determine the least common multiple (lcm). The lcm results can serve as a reference for identifying the best time to sell corn to prevent price declines. Additionally, a comparison of production levels across provinces is presented to help corn farmers understand when and where to distribute their produce to achieve maximum profit.
Downloads
References
Aldillah, R. 2017. Strategi Pengembangan Agribisnis Jagung di Indonesia. Analisis Kebijakan Pertanian, 15(1), 43–66.
Woestho, C., Handayani, M., & Fikri, A. W. N. 2021. Kluster Tanaman Pangan Unggulan di Provinsi Jawa Tengah. Jurnal Kajian Ilmiah, 21(1).
Suryana, A., & Agustian, A. 2014. Analisis Daya Saing Usaha Tani Jagung di Indonesia. Analisis Kebijakan Pertanian, 12(2), 143–156.
Inoua, S. M., & Smith, V. L. 2022. Neoclassical Supply and Demand, Experiments, and the Classical Theory Of Price Formation. History of Political Economy, 54(1), 37–73.
Azevedo, E. M., & Leshno, J. D. 2016. A Supply and Demand Framework for Two-Sided Matching Markets. Journal of Political Economy, 124(5), 1235–1268.
Zhou, Q., Tian, C., Zhang, H., Yu, J., & Li, F. 2020. How to Securely Outsource the Extended Euclidean Algorithm for Large-Scale Polynomials Over Finite Fields. Information Sciences, 512, 641–660. https://doi.org/10.1016/j.ins.2019.10.007.
Klein, K.-M., & Reuter, J. 2024. Faster Lattice Basis Computation--The Generalization of the Euclidean Algorithm. arXiv preprint arXiv:2408.06685.
Iliev, A., Kyurkchiev, N., & Rahnev, A. 2018. A Note on Adaptation of the Knuth’s Extended Euclidean Algorithm for Computing Multiplicative Inverse. International Journal of Pure and Applied Mathematics, 118(2), 281–290.
Rodriguez, C. M. F., Cruz, M. A. G., & Falcon, C. 2021. Full Euclidean Algorithm by Means of a Steady Walk. Applied Mathematics, 12(04), 269–279.
Cesaratto, E., Clément, J., Daireaux, B., Lhote, L., Maume-Deschamps, V., & Vallée, B. 2009. Regularity of the Euclid Algorithm; Application to the Analysis of Fast GCD Algorithms. Journal of Symbolic Computation, 44(7), 726–767.
Sabrigiriraj, M. 2024. A Tutorial on New Methods and Algorithms for Solving LCM and GCD. WSEAS Transactions on Computers, 23, 136–143.
Phiamphu, D., & Saha, P. 2018. Redesigned the Architecture of Extended-Euclidean Algorithm for Modular Multiplicative Inverse and Jacobi Symbol. In 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1345–1349). IEEE.
Doran, C., Lu, S., & Smith, B. 2014. A New Algorithm for Computing Inverses in Modular Arithmetic. arXiv preprint arXiv:1408.4638.
Aldaya, A. C., Sarmiento, A. J. C., & Sánchez-Solano, S. 2017. SPA Vulnerabilities of the Binary Extended Euclidean Algorithm. Journal of Cryptographic Engineering, 7(4), 273–285.
Poulakis, D. 2020. An Application of Euclidean Algorithm in Cryptanalysis of RSA. Elemente Der Mathematik, 75(3), 114–120.
Chandravathi, D., & Lakshmi, P. V. 2019. Privacy Preserving Using Extended Euclidean Algorithm Applied to RSA-Homomorphic Encryption Technique. Volume-8 Issue-10, August, 3175–3179.
Song, P.-C., Chu, S.-C., Pan, J.-S., & Yang, H. 2022. Simplified Phasmatodea Population Evolution Algorithm for Optimization. Complex & Intelligent Systems, 8(4), 2749–2767.
Conroy-Beam, D. 2018. Euclidean Mate Value and Power of Choice on the Mating Market. Personality and Social Psychology Bulletin, 44(2), 252–264.
Manduhu, M., & Jones, M. W. 2019. A Work Efficient Parallel Algorithm for Exact Euclidean Distance Transform. IEEE Transactions on Image Processing, 28(11), 5322–5335.
Thiers, J.-P., & Freudenberger, J. 2021. Generalized Concatenated Codes Over Gaussian and Eisenstein Integers for Code-Based Cryptography. Cryptography, 5(4), 33.
Blažek, A., Pelantová, E., & Svobodová, M. 2024. Optimal Representations of Gaussian and Eisenstein Integers Using Digit Sets Closed Under Multiplication. arXiv preprint arXiv:2410.02418.
Sheydvasser, A. S. 2021. The Twisted Euclidean Algorithm: Applications to Number Theory and Geometry. Journal of Algebra, 569, 823–855.
Zhang, W., Chen, Z., & Yin, F. 2016. Main Melody Extraction from Polyphonic Music Based on Modified Euclidean Algorithm. Applied Acoustics, 112, 70–78.
Gorokhovskyi, S., & Laiko, A. 2021. Euclidean Algorithm for Sound Generation.
Morrill, T. 2023. On the Euclidean Algorithm: Rhythm Without Recursion. Bulletin of the Australian Mathematical Society, 107(3), 361–367.
Jones, M. A., & Ohlinger, B. C. 2024. Self-Similar Structure of P-Positions of the Game Euclid. The Fibonacci Quarterly, 62(1), 15–28.
Alhassan, E. A., Simon, K. N., Bunyan, J. M., & Gregory, A. 2014. On Some Algebraic Properties of the Euclidean Algorithm with Applications to Real Life. Research Journal of Mathematics and Statistics, 6(4), 46–52. https://doi.org/10.19026/rjms.6.5271.
Feiwel, G. R. 2016. Arrow and the Ascent of Modern Economic Theory. Springer.
Badan Pusat Statistik Indonesia. 2024, October 15. Luas Panen, Produksi, dan Produktivitas Jagung Menurut Provinsi, 2023-2024. https://www.bps.go.id/id/statistics-table/2/MjIwNCMy/luas-panen--produksi--dan-produktivitas-jagung-menurut-provinsi.html.