ANALYSIS OF TEMPORAL VARIABILITY OF TIDEs AT STASIUN PASANG SURUT MAUMERE ON JANUARY 2023
DOI:
https://doi.org/10.59052/edufisika.v10i1.36825Keywords:
Fast Fourier Transform, Maumere, Temporal variability, TidesAbstract
Tides is caused by the gravitational forces of celestial bodies such as the sun and moon, lead to fluctuations in sea level on Earth. This study analyzes the frequency and height of tides measured by the Maumere tidal station (Stasiun pasang Surut Maumere) from January 12 to 14, 2023, comparing observed changes with theoretical predictions. The Fast Fourier Transformation (FFT) method, implemented via Microsoft Excel, was employed to dissect the tidal signal into its frequency components. Results indicate that the Maumere sea exhibits a diurnal tide cycle with an average height of 1.57 m during the observation period. The observed maximum tidal height change was 0.76 m, while the theoretical prediction, based on the Earth-moon distance of 0.37 million km on January 14, was 0.6 m. The root mean square error (RMSE) between observed and predicted tidal heights was 0.34 cm. This analysis demonstrates that FFT can effectively characterize tidal frequencies and contributes to the understanding of tidal behaviors, enhancing predictive models in oceanography.
Downloads
References
Abubakar, A., Mahmud, M., Tang, K., & Husaaini, A. (2020). Presentation of a wavelet based harmonic model for tidal level forecasting at sabah and sarawak. Geomatics and Environmental Engineering, 14(4), 5-23. https://doi.org/10.7494/geom.2020.14.4.5
Agustiani, N., Gunawan, I., Margaret, S., & Sujinah, S. (2022). Pola tanam padi untuk produktivitas tinggi dan indeks pertanaman yang optimal di lahan rawa pasang surut. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 50(3), 257-265. https://doi.org/10.24831/jai.v50i3.40983
Anwar, S., Satria, S. D. D., Muzadi, M. F., Zulkarnain, M. R., & Hidayahtullah, N. S. (2023). Efektivitas alat pendeteksi pasang surut air laut di desa tajung widoro. Journal of Engineering and Innovation, 1(1), 29–33.
Bacon, R., & Marion, JB (1965). Dinamika Klasik . Edisi Internasional Academic Press.
Bowen, M. M., Fernandez, D., Forcen-Vazquez, A., Gordon, A. L., Huber, B., Castagno, P., & Falco, P. (2021). The role of tides in bottom water export from the western Ross Sea. Scientific Reports, 11, 2246. https://doi.org/10.1038/s41598-021-81793-5
Candrayana, K. W., Sinarta, I. N., & Putu Eryani, I. G. A. (2023). Evaluasi sistem pengaman pantai di bali selatan untuk mengatasi tantangan perubahan iklim. Jurnal Ilmiah MITSU (Media Informasi Teknik Sipil Universitas Wiraraja), 11(2), 21–34. https://doi.org/10.24929/ft.v11i2.2319
Chen, Y., Gan, M., Pan, S., Pan, H., Zhu, X., & Tao, Z. (2020). Application of auto-regressive (ar) analysis to improve short-term prediction of water levels in the yangtze estuary. Journal of Hydrology, 590, 125386. https://doi.org/10.1016/j.jhydrol.2020.125386
Courtier, A. (1938). Classification of Tides in Four Types. Conferences sur les Marees.
Dai, S., Zhang, Y., Li, K., Chen, Q., & Ling, J. (2022). Arbitrary sampling fourier transform and its applications in magnetic field forward modeling. Applied Sciences, 12(24), 12706. https://doi.org/10.3390/app122412706
Danial, M. M., Darmania, & Sari, N. P. (2021). Pemanfaatan data pasang surut stasiun meteorologi dan maritim untuk identifikasi kenaikan muka air laut dan mitigasi banjir kota pontianak. Jurnal Pengabdi, 4(2), 195. https://doi.org/10.26418/jplp2km.v4i2.48773
Febriansyah, M. N., & Handoko, E. Y. (2022). Perbandingan komponen pasang surut dengan analisis harmonik antara satelit altimetri jason-2 dan jason-3 dengan stasiun pasang surut pada perairan jawa. Geoid, 18(1), 20. https://doi.org/10.12962/j24423998.v18i1.7422
Fitriana, D., Patria, MP, & Kusratmoko, E. (2022). Karakteristik pasang surut surabaya diamati selama 5 tahun (2015-2020). JGISE: Jurnal Sains dan Teknik Informasi Geospasial , 5 (1), 1. https://doi.org/10.22146/jgise.72856
Gultom, F., Harsono, G., Pranowo, W. S., & Adrianto, D. (2022). Sistem informasi pasang surut berbasis android di wilayah kerja pangkalan tni angkatan laut (studi kasus belawan, tarempa, sibolga, natuna dan cilacap). Jurnal Chart Datum, 3(2), 81-92. https://doi.org/10.37875/chartdatum.v3i2.121
Ichsari, LF, Handoyo, G., Setiyono, H., Ismanto, A., Marwoto, J., Yusuf, M., & Rifai, A. (2020). Studi komparasi hasil pengolahan pasang surut dengan 3 metode (admiralty, least square dan fast fourier transform) di pelabuhan malahayati, banda aceh. Jurnal Oseanografi Indonesia , 2 (2), 121–128. https://doi.org/10.14710/ijoce.v2i2.7985.
Jin, J., Ling, Z., Li, Z., Zuo, X., Fan, X., Huang, Y., … & Qiu, J. (2022). Spatiotemporal distribution of sea-island prehistoric dune sites, holocene sea levels, and aeolian sand activities in fujian province, china. Journal of Geographical Sciences, 32(6), 1157-1176. https://doi.org/10.1007/s11442-022-1990-9
Keith A. Sverdrup, Duxbury, A. B., & Duxbury, A. C. (2002). FUNDAMENTALS OF OCEANOGRAPHY. McGRAW HILL.
Kondrin, A. T. and Korablina, A. (2023). Synoptic level fluctuations of the white sea. Russian Journal of Earth Sciences, 1-12. https://doi.org/10.2205/2023es000836
Kurniawan, R., Kushadiwijayanto, A. A., & Risko, R. (2020). Pengaruh kelengkapan data pasang surut laut terhadap kualitas hasil t_tide. Jurnal Laut Khatulistiwa, 2(3), 137. https://doi.org/10.26418/lkuntan.v2i3.34432
Korzhenovskaia, A. I., Medvedev, I., & Arkhipkin, V. S. (2022). Tidal sea level oscillations in the Sea of Azov. Oceanology. https://doi.org/10.1134/S0001437022050095
Liang, H., & Zhou, X. (2022). Impact of tides and surges on fluvial floods in coastal regions. Remote Sensing, 14(22), 5779. https://doi.org/10.3390/rs14225779
Lin, L., von Storch, H., Guo, D., Tang, S., Zheng, P., & Chen, X. (2022). The effect of tides on internal variability in the bohai and yellow sea. Dynamics of Atmospheres and Oceans, 98, 101301. https://doi.org/10.1016/j.dynatmoce.2022.101301
Mutaqin, B. W. and Ningsih, R. L. (2023). Tidal characteristics in southern waters of java - indonesia. Jurnal Geografi, 15(2), 154-164. https://doi.org/10.24114/jg.v15i2.45017
Nascimento, Â., Biguino, B., Borges, C., Cereja, R., Cruz, J. P. C., Sousa, F., Dias, J., Brotas, V., Palma, C., & Brito, A. C. (2021). Tidal variability of water quality parameters in a mesotidal estuary (Sado Estuary, Portugal). Scientific Reports, 11, 23112. https://doi.org/10.1038/s41598-021-02603-6
Nirmala, A. (2024). Model matematis peramalan pasang surut menggunakan metode least square di perairan kabupaten kubu raya. Jurnal Teknologi Lingkungan Lahan Basah, 12(1), 001. https://doi.org/10.26418/jtllb.v12i1.72393
Peng, D., Soon, K. Y., Khoo, V. H. S., Mulder, E., Wong, P. W., & Hill, E. M. (2023). Tidal asymmetry and transition in the Singapore Strait revealed by GNSS interferometric reflectometry. Geoscience Letters, 10, 39. https://doi.org/10.1186/s40562-023-00294-7
Piani, P., Kushadiwijayanto, A. A., & Risko, R. (2022). Studi batimetri dan pasang surut di kawasan perairan pulau bawal kabupaten ketapang kalimantan barat. Oseanologia, 1(3), 106. https://doi.org/10.26418/jose.v1i3.56438
Rahman, W. W., & Husen, A. (2023). Analisis pengelolaan sumber daya alam hutan mangrove di teluk kendari sulawesi tenggara. Ecolab, 17(2), 125–131. https://doi.org/10.59495/jklh.2023.17.2.125-131
Ramadhan, A., Adytia, D., Saepudin, D., Husrin, S., & Adiwijaya, A. (2021). Forecasting of sea level time series using rnn and lstm case study in sunda strait. Lontar Komputer Jurnal Ilmiah Teknologi Informasi, 12(3), 130. https://doi.org/10.24843/lkjiti.2021.v12.i03.p01
Robertson, R. (2023). Tidal and internal tidal impacts in the tasman sea. Geoscience Letters, 10, 8. https://doi.org/10.1186/s40562-023-00262-1
Rosida, L. A., Anwar, M. S., Sholeh, O. M., Mushofa, A. S., & Prayogo, L. M. (2022). Penerapan Metode Least Square untuk Analisis Harmonik Pasang Surut Air Laut di Kabupaten Tuban, Jawa Timur. El-Jughrafiyah, 2(2), 67. https://doi.org/10.24014/jej.v2i2.17160
Rusdin, A., Oshikawa, H., Divanesia, A. M. A., & Hatta, M. P. (2024). Analysis and prediction of tidal measurement data from temporary stations using the least squares method. Civil Engineering Journal, 10(2), 384-403. https://doi.org/10.28991/cej-2024-010-02-03
Sagala, H. A. M. U., Pasaribu, R. P., & Ulya, F. K. (2021). Pemodelan pasang surut dengan menggunakan metode flexible mesh untuk mengetahui genangan rob di pesisir karawang. Pelagicus, 2(3), 141. https://doi.org/10.15578/plgc.v2i3.10341
Susanto, R. D., & Ray, R. D. (2022). Seasonal and interannual variability of tidal mixing signatures in Indonesian seas from high-resolution sea surface temperature. Remote Sensing, 14, 1934. https://doi.org/10.3390/rs14081934
Stewart, RH (2008). Pengantar Oseanografi Fisik Universitas Texas A&M.
Tiatama, S. H., & Atmodjo, W. (2024). Analisis Keterkaitan Fenomena Supermoon Terhadap Komponen Pasang Surut. 06(02), 114–120. https://doi.org/10.14710/ijoce.v6i2.19036
Triatmodjo, B. (2010). Perencanaan Pelabuhan. Beta Offset.
Triatmojdo, B. (2012). Perencanaan Bangunan Pantai. Penerbit Beta Offset.
Uddin, Z., Razzak, A., Ahmed, F., & Iqbal, M. (2023). Teaching physics using microsoft excel-ii. Physics Education, 58(5), 055001. https://doi.org/10.1088/1361-6552/acdbb1
Vulliet, C., Koci, J., Jarihani, B., Sheaves, M., & Waltham, N. (2024). Assessing tidal hydrodynamics in a tropical seascape using structure-from-motion photogrammetry and 2D flow modelling. Estuaries and Coasts, 47(3), 352–375. https://doi.org/10.1007/s12237-023-01288-6
Wahid, A., Haryo, D., & Handoyo, G. (2023). Elevasi muka air pantai gesing gunung kidul , daerah istimewa yogyakarta dengan menggunakan rumus 1 – 5 Highest High Water Level ( HHWL ) Lowest Low Water Level ( LLWL ). Indonesian Journal of Oceanography, 05(02), 124–131.
Wandira , CA, Pramudya , Y. (2023). Pengembangan sistem perhitungan posisi bulan tampak berbasis python pada koordinat ekuatorial. Pendidikan : Jurnal Pendidikan Fisika , 8 ( 3 ), 356-352 . https://doi.org/10.59052/edufisika.v8i3.29053
Waru, A. (2022). Analisis keterkaitan arus pasang surut dan pasang surat di wilayah perairan laut flores studi kasus labuan bajo dan maumere. Magnetic: Research Journal Of Physics and It’s Application, 2(2), 173–178.
Webb, P. (2017). Introduction to Oceanography: Estuaries. In Roger Williams University. https://rwu.pressbooks.pub/webboceanography/chapter/13-6-estuaries/
Webb, P. (2023). INTRODUCTION TO OCEANOGRAPHY. LibreTexts. https://geo.libretexts.org/Bookshelves/Oceanography/Introduction_to_Oceanography_(Webb)/11%3A_Tides
Weiss, R., Dura, T., & Irish, J. L. (2022). Modeling coastal environmental change and the tsunami hazard. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.871794
Widana, I. B. G. A., Mudamakin, A. P., & Subrata, I. M. (2022). Prioritas pengembangan dtw bahari di kawasan pesisir utara kabupaten sikka, provinsi nusa tenggara timur. Jurnal Kepariwisataan, 21(2), 177–186. https://doi.org/10.52352/jpar.v21i2.864
Yang, C., Wu, C., & Hsieh, C. (2020). Long short-term memory recurrent neural network for tidal level forecasting. Ieee Access, 8, 159389-159401. https://doi.org/10.1109/access.2020.3017089
Yang, S., Sheng, J., Ohashi, K., & Chen, S. (2023). Non-linear interactions between tides and storm surges during extreme weather events over the eastern Canadian shelf. Ocean Dynamics. https://doi.org/10.1007/s10236-023-01556-w
Zevri, A. (2023). Pengaruh dinamika pasang surut terhadap daerah irigasi rawa pantai kabupaten kapuas provinsi kalimantan tengah. Jurnal Sumber Daya Air, 19(1), 42-56. https://doi.org/10.32679/jsda.v19i1.803
Zhou, L., Yang, Y., Li, G., & Tong, C. (2023). Osl dating of coastal dunes on the southeastern coast of hainan island, china. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1165551
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Putri Ani Saumarachmawati, Yudhiakto Pramudya

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.