Study on The Ability of H2O2 and The Effective Concentration of CuSO4 in Degrading Cyanide

Authors

  • Sri Murda Niati Department of Chemical Engineering, Politeknik Negeri Sriwijaya, Jalan Srijaya Bukit Besar, Palembang 30139, South Sumatra, Indonesia
  • Lukman Lukman PT. Antam Tbk, Jalan Letjen Tb Simatupang, Lingkar Selatan Tanjung Barat, South Jakarta 12530, DKI Jakarta, Indonesia
  • Endang Supraptiah Department of Chemical Engineering, Politeknik Negeri Sriwijaya, Jalan Srijaya Bukit Besar, Palembang 30139, South Sumatra, Indonesia
  • Gemala Cahya 1Department of Chemical Engineering, Politeknik Negeri Sriwijaya, Jalan Srijaya Bukit Besar, Palembang 30139, South Sumatra, Indonesia

DOI:

https://doi.org/10.22437/chp.v7i2.30438

Keywords:

Degradation, Degussa Method, Gold Processing, Cyanide

Abstract

PT. Aneka Tambang conducts gold processing using NaCN reagents, then from the gold processing process produces waste containing cyanide which can cause damage to the environment. One method used to reduce cyanide concentrations is the Degussa method. The Degussa method is a method to degrade free cyanide in waste by using H2O2 and Cu2+ ions as a catalyst source so that it becomes a harmless cyanide compound (cyanate ion). The purpose of the study was to determine the ability of hydrogen peroxide and determine the effective concentration of copper sulfate in degrading cyanide in the Degussa process and determine the level of stability of hydrogen peroxide oxidizers in the open air. Sample testing was carried out by varying the H2O2 retrieval time, variations in H2O2 dilution factor and copper sulfate concentration variations, then the sample was stirred with a jartes stirrer for 15 minutes. Cyanide is determined by spectrophotometer, the absorbance obtained is fed into the linear regression equation so that the final free cyanide concentration is obtained. From the experiment, it can be concluded that the concentration of cyanide degradation is effectively obtained when hydrogen peroxide and copper sulfate that have been mixed in the mixing tank are right out of use.

Downloads

Download data is not yet available.

References

ANTAM. (2020). Laporan Keberlanjutan PT.ANTAM. PT. Aneka Tambang Tbk.

Suhadi, Sueb, & Syamsussabri, M. (2019). Mercury and Cyanide Pollution on the Aquatic Organism in Sekotong People Gold Mining. Journal of Physics: Conference Series, 1417(1). https://doi.org/10.1088/1742-6596/1417/1/012032

Menteri Lingkungan Hidup. (2004). Keputusan Menteri Lingkungan Hidup Tentang Baku Mutu Air Limbah Bagi Usaha dan atau Kegiatan Pertambangan Emas atau Batu Bara Nomor: 202 Tahun 2004. 1–10.

Gani, P. R., Abidjulu, J., & Wuntu, A. D. (2017). Analisis Air Limbah Pertambangan Emas Tanpa Izin Desa Bakan Kecamatan Lolayan Kabupaten Bolaang Mongondow. Jurnal MIPA, 6(2), 6. https://doi.org/10.35799/jm.6.2.2017.16927

Jaszczak, E., Polkowska, Ż., Narkowicz, S., & Namieśnik, J. (2017). Cyanides in the environment—analysis—problems and challenges. Environmental Science and Pollution Research, 24(19), 15929–15948. https://doi.org/10.1007/s11356-017-9081-7

Tünay, O., Kabdasli, I., Arslan-Alaton, I., & Olmez-Hanci, T. (2010). Chemical Oxidation Applications for Industrial Wastewaters. In Water Intelligence Online (Vol. 9). https://doi.org/10.2166/9781780401416

Khodadadi, A., Abdolahi, M., & Teimoury, P. (2005). Detoxification of Cyanide in Gold Processing Wastewater by Hydrogen Peroxide. Iranian Journal of Environmental Health Science & Engineering, 2(3), 177–182.

Medina, D., & Anderson, C. G. (2020). A review of the cyanidation treatment of copper-gold ores and concentrates. Metals, 10(7), 1–11. https://doi.org/10.3390/met10070897

Pitschmann, V., Kobliha, Z., & Tušarová, I. (2011). A simple spectrophotometric determination of cyanides by p-nitrobenzaldehyde and tetrazolium blue. Advances in Military Technology, 6(2), 19–27.

Reid, I. O. A., & Tageldin, A. M. (2017). Multi-wavelength Spectrophotometric Determination of Chlorzoxazone and Paracetamol in Bulk and Capsules QR Code *Correspondence Info. International Journal of Advances in Pharmaceutical Analysis, 07(02), 16–20.

Estrada-Montoya, C. C., Galeano-Vanegas, N. F., & Restrepo-Franco, G. M. (2020). Evaluation of cyanide and heavy metals removal in liquid effluents from small mining’s gold benefit, by adsorption with activated carbon and hydrogen peroxide in Segovia, Antioquia. DYNA (Colombia), 87(212), 9–17. https://doi.org/10.15446/dyna.v87n212.79716

Fungene, T., Groot, D. R., Mahlangu, T., & Sole, K. C. (2018). Decomposition of hydrogen peroxide in alkaline cyanide solutions. Journal of the Southern African Institute of Mining and Metallurgy, 118(12), 1259–1264. https://doi.org/10.17159/2411-9717/2018/v118n12a4

Alvillo-Rivera, A., Garrido-Hoyos, S., Buitrón, G., Thangarasu-Sarasvathi, P., & Rosano-Ortega, G. (2021). Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 12, 1418–1433. https://doi.org/10.1016/j.jmrt.2021.03.030

Hou, D., Liu, L., Yang, Q., Zhang, B., Qiu, H., Ruan, S., Chen, Y., & Li, H. (2020). Decomposition of cyanide from gold leaching tailingsby using sodium metabisulphite and hydrogen peroxide. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/5640963

Johnson, C. A. (2015). The fate of cyanide in leach wastes at gold mines: An environmental perspective. Applied Geochemistry, 57, 194–205. https://doi.org/10.1016/j.apgeochem.2014.05.023

J.M., L., D.B., D., & W.C., C. (2002). Thermodynamics of the aqueous copper-cyanide system. Hydrometallurgy, 66, 23–36.

Miranda, B. C., Chimentão, R. J., Szanyi, J., Braga, A. H., Santos, J. B. O., Gispert-Guirado, F., Llorca, J., & Medina, F. (2015). Influence of copper on nickel-based catalysts in the conversion of glycerol. Applied Catalysis B: Environmental, 166–167, 166–180. https://doi.org/10.1016/j.apcatb.2014.11.019

Al Fatony, Z., Resha, A. H., Persada, G. P., Makertihartha, I. G. B. N., Gunawan, M. L., & Subagjo. (2018). Effects of Cu on the modified Co-based catalyst activity for fischer-tropsch synthesis. ASEAN Journal of Chemical Engineering, 18(1), 60–67.

Deveci, H., Alp, I., & Celep, O. (2006). Factor affecting decomposition of cyanide by hydrogen peroxide. XIIII International Mineral Processing Congress, May 2014.

Dominguez-Rios, C. (2020). Replacement of Copper Cyanide by Copper Sulfate on Electroless Brass Plating Process. Advances in Image and Video Processing, 8(6), 37–48. https://doi.org/10.14738/aivp.86.9136

Graphical Abstract

Downloads

Published

2023-12-31

How to Cite

Niati, S. M., Lukman, L., Supraptiah, E., & Cahya, G. (2023). Study on The Ability of H2O2 and The Effective Concentration of CuSO4 in Degrading Cyanide. Chempublish Journal, 7(2), 117-126. https://doi.org/10.22437/chp.v7i2.30438