Secondary Metabolites of The Fabaceae Plant Family A Review of Extraction Methods, Molecules and Bioactivity
DOI:
https://doi.org/10.22437/chp.v9i1.36964Kata Kunci:
Extraction, Fabeceae plants, molecular structure, traditional medicineAbstrak
Traditional medicine helps manage and treat various illnesses worldwide, particularly in Africa and Asia. For example, Traditional Indonesian Medicine (Jamu), Traditional Indian Medicine (Ayurveda), and Traditional African Medicine use a range of indigenous herbs to treat health conditions like fevers, malaria, diarrhea, diabetes mellitus, Asthma, and hypertension. Alkaloids, flavonoids, saponins, terpenoids, and polyphenols are bioactive substances with anti-inflammatory, antibacterial, and antioxidant effects in plants. The Fabaceae family consists of flowering plants, peas, legumes, woody trees, and shrubs. Fabaceae plants are widely used across Africa and Asia for traditional medicinal purposes. In addition, Fabaceae plants have significant economic value as a source of wood for the timber industry. This review highlights extraction methods, isolated molecules, and antimicrobial and antioxidant activity of Fabaceae plants found in Africa and Asia. We also detailed secondary metabolite molecules extracted from Fabaceae plant body parts and their identified bioactivities. This review compiles scientific information on the phytochemicals and pharmacological properties of plants in the Fabaceae family that could be useful for future drug candidate investigations.
Unduhan
Referensi
1. Pullaiah, T. (Ed.). (2018). Global Biodiversity: Volume 2: Selected European Countries (1st ed.). Apple Academic Press. https://doi.org/10.1201/9780429487750
2. KENICER, G. Legumes of the World. Edinburgh Journal of Botany 2005, 62(3), 195–196. https://doi:10.1017/S0960428606190198
3. USDA, Agricultural Research Service, National Plant Germplasm System. (2023). Germplasm Resources Information Network (GRIN Taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland. URL: http://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?26017. Accessed January 14, 2023.
4. Grygier, A.; Chakradhari, S.; Ratusz, K.; Rudzinska, M.; Patel, K. S.; Lazdina, D., Gornas. P. Seven underutilized species of the Fabaceae family with high potential for industrial application as alternative sources of oil and lipophilic bioactive compounds. Industrial Crops and Products 2022, 186, 115251. https://doi:10.1016/j.indcrop.2022.115251.
5. Garza, W. Fabaceae: Classification, Nutrient Composition, and Health Benefits; Nova Science Publishers, Inc: New York, 2015, p.131.
6. Frimpong, E. K.; Asong, J. A.; Aremu, A. O. A Review on Medicinal Plants Used in the Management of Headache in Africa. Plants (Basel) 2021, 10(10), 2038. https://doi: 10.3390/plants10102038.
7. Gao, T.; Yao, H.; Song, J.; Liu, C.; Zhu, Y.; Ma, X.; Pang, X.; Xu, H.; Chen, S. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. Journal of Ethnopharmacology 2010, 130 (1), 116–121. https://doi.org/10.1016/j.jep.2010.04.026.
8. Auditeau, E.; Chassagne, F.; Bourdy, G.; Bounlu, M.; Jost, J.; Luna, J.; Ratsimbazafy, V.; Preux, P-M.; Boumediene, F. Herbal medicine for epilepsy seizures in Asia, Africa, and Latin America: A systematic review. Journal of Ethnopharmacology 2019, 234, 119–153. https://doi.org/10.1016/j.jep.2018.12.049.
9. Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21 (5), 559. https://doi.org/10.3390/molecules21050559.
10. Oladele, A. T.; Dairo, B. A.; Elujoba, A. A.; Oyelami, A. O. Management of Superficial Fungal Infections with Senna Alata (“Alata”) Soap: A Preliminary Report. Journal of Pharmacognosy and Phytochemistry 2010, 4 (3), 098–103.
11. Oladeji, S. O.; Adelowo, F. E.; Odelade, K. A. Mass Spectroscopic and Phytochemical Screening of Phenolic Compounds in the Leaf Extract of Senna Alata (L.) Roxb. (Fabales: Fabaceae). Braz. J. Biol. Sci. 2016, 3 (5), 209. https://doi.org/10.21472/bjbs.030519.
12. Mt, Y.; Ao, A.; At, O.; Ma, A.; Ob, O.; Ga, J.; Awo, O.; Aj, A. Abortifacient Potential of Aqueous Extract of Senna Alata Leaves in Rats. Journal of Reproduction and Contraception 2010, 21 (3), 163–177. https://doi.org/10.1016/S1001-7844(10)60025-9.
13. Abdillah, S.; Tambunan, R. M.; Farida, Y.; Sandhiutami, N. M. D.; Dewi, R. M. Phytochemical Screening and Antimalarial Activity of Some Plants Traditionally Used in Indonesia. Asian Pacific Journal of Tropical Disease 2015, 5 (6), 454–457. https://doi.org/10.1016/S2222-1808(15)60814–3.
14. Chávez-Arias, C. Camilo.; Ramírez-Godoy, A.; Restrepo-Díaz, H. Influence of drought, high temperatures, and/or defense against arthropod herbivory on the production of secondary metabolites in maize plants. A review. Current Plant Biology 2022, 32, 100268. https://doi.org/10.1016/j.cpb.2022.100268.
15. Romo-Rico, J.; Krishna, S. M.; Bazaka, K.; Golledge, J.; Jacob, M. V. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomaterialia 2022, 147, 34–49. https://doi.org/10.1016/j.actbio.2022.05.043.
16. Ji, S.; Fattahi, A.; Raffel, N.; Hoffmann, I.; Beckmann, W. M.; Dittrich, R.; Schrauder, M. Antioxidant Effect of Aqueous Extract of Four Plants with Therapeutic Potential on Gynecological Siseases; Semen persicae, Leonurus, cardiaca, Hedyotis diffusa, and Curcuma zedoaria. European Journal of Medical Research 2017, 22 (1), 50. https://doi.org/10.1186/s40001-017-0293-6.
17. Jha, A. K.; Sit, Nandan. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review, Trends in Food Science & Technology 2022, 119, 579-591. https://doi.org/10.1016/j.tifs.2021.11.019.
18. Kaczmarska, A.; Pieczywek, P. M.; Cybulska, J.; Zdunek, A. A mini-review on the plant sources and methods for extraction of rhamnogalacturonan I, Food Chemistry 2023, 403, 134378. https://doi.org/10.1016/j.foodchem.2022.134378.
19. Zhang, H-F.; Yang, X-H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends in Food Science & Technology 2011, 22(12), 672–688. https://doi.org/10.1016/j.tifs.2011.07.003.
20. El-Masry, S.; Hammoda, H. M.; Zaatout, H. H.; Alqasoumi, S. I.; Abdel-Kader, M. S. Constituents of Erythrina Caffra Stem Bark Grown in Egypt. Natural Product Sciences 2010, 16 (4), 6. https://doi: 10.1016/s0031-9422(02)00202–9.
21. Ahmed Hassan, L. E.; Khadeer Ahamed, M. B.; Abdul Majid, A. S.; Iqbal, M. A.; Al Suede, F. S. R.; Haque, R. A.; Ismail, Z.; Ein, O. C.; Majid, A. M. S. A. Crystal Structure Elucidation and Anticancer Studies of (-)-Pseudosemiglabrin: A Flavanone Isolated from the Aerial Parts of Tephrosia Apollinea. PLoS ONE 2014, 9 (3), e90806. https://doi.org/10.1371/journal.pone.0090806.
22. Mohammed, M. M. D.; Ibrahim, N. A.; Awad, N. E.; Matloub, A. A.; Mohamed-Ali, A. G.; Barakat, E. E.; Mohamed, A. E.; Colla, P. L. Anti-HIV-1 and Cytotoxicity of the Alkaloids of Erythrina Abyssinica Lam. Growing in Sudan. Natural Product Research 2012, 26 (17), 1565–1575. https://doi.org/10.1080/14786419.2011.573791
23. El-Masry, S.; Amer, M. E.; Abdel-Kader, M. S.; Zaatout, H. H. Prenylated Flavonoids of Erythrina Lysistemon Grown in Egypt. Phytochemistry 2002, 60 (8), 783–787. https://doi.org/10.1016/S0031-9422(02)00202–9.
24. Nasser Singab, A.; Youssef, F. S. Medicinal Plants with Potential Antidiabetic Activity and Their Assessment. Med Aromat Plants 2014, 03 (01). https://doi.org/10.4172/2167-0412.1000151.
25. Melek, F. R.; Kassem, I. A. A.; Miyase, T.; Fayad, W. Caspicaosides E–K, Triterpenoid Saponins and Cytotoxic Acylated Saponins from Fruits of Gleditsia Caspica Desf. Phytochemistry 2014, 100, 110–119. https://doi.org/10.1016/j.phytochem.2014.01.019.
26. Barba, F. J.; Putnik, P.; Bursać Kovačević, D.; Poojary, M. M.; Roohinejad, S.; Lorenzo, J. M.; Koubaa, M. Impact of Conventional and Non-Conventional Processing on Prickly Pear ( Opuntia Spp.) and Their Derived Products: From Preservation of Beverages to Valorization of by-Products. Trends in Food Science & Technology 2017, 67, 260–270. https://doi.org/10.1016/j.tifs.2017.07.012.
27. Bursać Kovačević, D.; Maras, M.; Barba, F. J.; Granato, D.; Roohinejad, S.; Mallikarjunan, K.; Montesano, D.; Lorenzo, J. M.; Putnik, P. Innovative Technologies for the Recovery of Phytochemicals from Stevia Rebaudiana Bertoni Leaves: A Review. Food Chemistry 2018, 268, 513–521. https://doi.org/10.1016/j.foodchem.2018.06.091.
28. Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M. C.; Sabatini, S.; Cossignani, L.; Lucini, L. Impact of Conventional/Non-Conventional Extraction Methods on the Untargeted Phenolic Profile of Moringa Oleifera Leaves. Food Research International 2019, 115, 319–327. https://doi: 10.1016/j.foodres.2018.11.046.
29. Sasidharan, S.; Shanmugapriya; Jothy, S. L.; Vijayarathna, S.; Kavitha, N.; Oon, C. E.; Chen, Y.; Dharmaraj, S.; Lai, N. S.; Kanwar, J. R. Conventional and Non-Conventional Approach towards the Extraction of Bioorganic Phase. In Bioorganic Phase in Natural Food: An Overview; Roopan, S. M., Madhumitha, G., Eds.; Springer International Publishing: Cham, 2018, 41–57. https://doi.org/10.1007/978-3-319-74210-6_4.
30. Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin Med 2018, 13 (1), 20. https://doi.org/10.1186/s13020-018-0177-x.
31. Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique. Food Chemistry 2016, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008
32. Masruri, M., Pangestin, N. D., Pangesti, A. P., Arini, W. Reducing Environmental Effect of Bark Waste of Sengon (Paraserianthes falcataria L.) by Applying As a Source of Green Ingredients To Lower Glucose-related Diseases. IOP Conf. Series: Earth and Environmental Science 239 (2019) 012025. https://doi:10.1088/17551315/239/1/012025
33. Baihaqi, Z. A.; Widiyono, I.; Nurcahyo, W. In Vitro Anthelmintic Activity of Aqueous and Ethanol Extracts of Paraserianthes Falcataria Bark Waste against Haemonchus Contortus Obtained from a Local Slaughterhouse in Indonesia. Veterinary World 2020, 13(8): 1549-1554. https://doi: 10.14202/vetworld.2020.1549-1554
34. Rumidatul, A.; Aryantha, I. N. P.; Sulistyawati, E. Phytochemicals Screening, GC/MS Characterization, and Antioxidant Activity of Falcataria Moluccana Miq. Barneby and J. W. Grimes Methanolic Extract. Pharmacognosy Journal 2021, 13 (2), 6. http://dx.doi.org/10.5530/pj.2021.13.57
35. Teinkela, J. E. M., Noundou, X. S., Mimba, J. E. Z., Meyer, F., Tabouguia, O. M., Nguedia, J. C. A., Hoppe, H. C., Krause, R. W. M., Wintjens, R., Azebaze, G. A. B. Compound isolation and biological activities of Piptadeniastrum africanum (hook.f.) Brennan roots. Journal of Ethnopharmacology 2020, 255, 112716. https://doi.org/10.1016/j.jep.2020.112716
36. Thakur, A. V.; Ambwani, S.; Kumar, T. Preliminary Phytochemical Screening and GC-MS Analysis of Leaf Extract of Acacia Catechu (L.f.) Willd. International Journal of Herbal Medicine 2018, 6 (2), 81–85.
37. Sunday, O. J., Babatunde, S. K., Ajiboye, A. E., Adedayo, R. M., Ajao, M. A., Ajuwon, B. I. Evaluation of Phytochemical Properties and In-vitro Antibacterial Activity of the Aqueous Extracts of Leaf, Seed and Root of Abrus precatorius Linn. Against Salmonella and Shigella. Asian Pac J Trop Biomed 2016, 6 (9), 755–799. http://dx.doi.org/10.1016/j.apjtb.2016.07.002.
38. Shourie, A., Kalra, K. Analysis of Phytochemical Constituents and Pharmacological Properties of Abrus Precatorius L. Int J Pharm Bio Sci 2013, 4 (1), 91–101.
39. Kusuma, I. W.; Murdiyanto; Arung, E. T.; Syafrizal; Kim, Y. Antimicrobial and Antioxidant Properties of Medicinal Plants Used by the Bentian Tribe from Indonesia. Food Science and Human Wellness 2014, 3 (3–4), 191–196. https://doi.org/10.1016/j.fshw.2014.12.004.
40. Ayal, G.; Belay, A.; Kahaliw, W. Evaluation of Wound Healing and Anti-Inflammatory Activity of the Leaves of Calpurnia Aurea (Ait.) Benth (Fabaceae) in Mice. Wound Medicine 2019, 25 (1), 100151. https://doi.org/10.1016/j.wndm.2019.100151.
41. Belayneh, Y. M.; Birru, E. M. Antidiabetic Activities of Hydromethanolic Leaf Extract of Calpurnia Aurea (Ait.) Benth. Subspecies Aurea (Fabaceae) in Mice. Evidence-Based Complementary and Alternative Medicine 2018, 2018, 3509073. https://doi.org/10.1155/2018/3509073.
42. Birru, E. M.; Asrie, A. B.; Adinew, G. M.; Tsegaw, A. Antidiarrheal Activity of Crude Methanolic Root Extract of Idigofera Spicata Forssk.(Fabaceae). BMC Complement Altern Med 2016, 16 (1), 272. https://doi.org/10.1186/s12906-016-1252-4.
43. Obogwu, M. B.; Akindele, A. J.; Adeyemi, O. O. Hepatoprotective and in Vivo Antioxidant Activities of the Hydroethanolic Leaf Extract of Mucuna Pruriens (Fabaceae) in Antitubercular Drugs and Alcohol Models. Chinese Journal of Natural Medicines 2014, 12 (4), 273–283. https://doi.org/10.1016/S1875-5364(14)60054–6.
44. Gupta, P. S.; Patel, S. In Vitro Antimitotic and Cytotoxic Potential of Plant Extracts: A Comparative Study of Mucuna Pruriens, Asteracantha Longifolia and Sphaeranthus Indicus. Futur J Pharm Sci 2020, 6 (1), 115. https://doi.org/10.1186/s43094-020-00137-8.
45. Bhargavi, G.; Nageswara Rao, P.; Renganathan, S. Review on the Extraction Methods of Crude Oil from All Generation Biofuels in Last Few Decades. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 330, 012024. https://doi.org/10.1088/1757-899X/330/1/012024.
46. Rosdiana, N. A., Dumarçay, S., Gérardin, C., Chapuis, H., Santiago-Medina, F. J., Sari, R. K., Syafii, W., Gelhaye, E., Raharivelomanana, P., Mohammed, R., Gérardin, P. Characterization of bark extractives of different industrial Indonesian wood species for potential valorization. Industrial Crops and Products 2017, 108, 121–127. https://doi.org/10.1016/j.indcrop.2017.06.034.
47. Komakech, R.; Kim, Y.; Matsabisa, G. M.; Kang, Y. Anti-Inflammatory and Analgesic Potential of Tamarindus Indica Linn. (Fabaceae): A Narrative Review. Integrative Medicine Research 2019, 8 (3), 181–186. https://doi.org/10.1016/j.imr.2019.07.002.
48. Borquaye, L. S.; Doetse, M. S.; Baah, S. O.; Mensah, J. A. Anti-Inflammatory and Antioxidant Activities of Ethanolic Extracts of Tamarindus Indica L. (Fabaceae). Cogent Chemistry 2020, 6 (1), 1743403. https://doi.org/10.1080/23312009.2020.1743403.
49. Gupta, S.; Singh, A. Antimicrobial, Analgesic and Anti - Inflammatory Activity Reported on Tamarindus Indica Linn Root Extract. PJ 2017, 9 (3), 410–416. https://doi.org/10.5530/pj.2017.3.70.
50. International Diabetes Federation. IDF Diabetes Atlas, 9th ed. Brussels, Belgium: International Diabetes Federation, 2019.
51. Yusro, F., Ohtani, K., Kubota, S. Inhibition of α-Glucosidase by Methanol Extracts from Wood Bark of Anacardiaceae, Fabaceae, Malvaceae and Phyllanthaceae Plants Family in West Kalimantan, Indonesia. Kuroshio Science 2016, 9 (2), 108-122. https://doi:10.1111/1750-3841.16098.
52. Agnihotri, A., & Singh, V. Effect of Tamarindus indica Linn. and Cassia fistula Linn. stem bark extracts on oxidative stress and diabetic conditions. Acta poloniae pharmaceutica, 2013, 70 (6), 1011-9. https://pubmed.ncbi.nlm.nih.gov/24383324/
53. Sowndhararajan, K.; Joseph, J. M.; Manian, S. Antioxidant and Free Radical Scavenging Activities of Indian Acacias : Acacia Leucophloea (Roxb.) Willd., Acacia Ferruginea Dc., Acacia Dealbata Link. and Acacia Pennata (L.) Willd. International Journal of Food Properties 2013, 16 (8), 1717–1729. https://doi.org/10.1080/10942912.2011.604895
54. Bhosle, V. Anticonvulsant and Antioxidant Activity of Aqueous Leaves Extract of Desmodium Triflorum in Mice against Pentylenetetrazole and Maximal Electroshock Induced Convulsion. Revista Brasileira de Farmacognosia 2013, 23 (4), 692–698. https://doi.org/10.1590/S0102-695X2013005000047.
55. GINA-2021-Main-Report_FINAL_21_04_28-WMS.Pdf.
56. Taur, D. J.; Patil, R. N.; Patil, R. Y. Antiasthmatic Related Properties of Abrus Precatorius Leaves on Various Models. Journal of Traditional and Complementary Medicine 2017, 7 (4), 428–432. https://doi.org/10.1016/j.jtcme.2016.12.007
57. Govindarajan, M.; Rajeswary, M.; Sivakumar, R. Repellent Properties of Delonix Elata (L.) Gamble (Family: Fabaceae) against Malaria Vector Anopheles Stephensi (Liston) (Diptera: Culicidae). Journal of the Saudi Society of Agricultural Sciences 2015, 14 (2), 128–133. https://doi.org/10.1016/j.jssas.2013.08.005.
58. Abdulrazak, N.; Asiya, U.; Usman, N.; Unata, I.; Farida, A. Antiplasmodial Activity of Ethanolic Extract of Root and Stem Back of Cassia Sieberiana DC on Mice. J Intercult Ethnopharmacol 2015, 4 (2), 96. https://doi.org/10.5455/jice.20141231014333.
59. Chizoba Ekezie, F.-G.; Sun, D.-W.; Han, Z.; Cheng, J.-H. Microwave-Assisted Food Processing Technologies for Enhancing Product Quality and Process Efficiency: A Review of Recent Developments. Trends in Food Science & Technology 2017, 67, 58–69. https://doi.org/10.1016/j.tifs.2017.05.014.
60. Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. Journal of Chromatography A 2021, 1635, 461770. https://doi.org/10.1016/j.chroma.2020.461770.
61. Vinatoru, M.; Mason, T. J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC Trends in Analytical Chemistry 2017, 97, 159–178. https://doi.org/10.1016/j.trac.2017.09.002.
62. Akbari, S.; Abdurahman, N. H.; Yunus, R. M. Optimization of Saponins, Phenolics, and Antioxidants Extracted from Fenugreek Seeds Using Microwave-Assisted Extraction and Response Surface Methodology as an Optimizing Tool. Comptes Rendus Chimie 2019, 22 (11–12), 714–727. https://doi.org/10.1016/j.crci.2019.07.007.
63. Solarte, D. A.; Ruiz-Matute, A. I.; Chito-Trujillo, D. M.; Rada-Mendoza, M.; Sanz, M. L. Microwave Assisted Extraction of Bioactive Carbohydrates from Different Morphological Parts of Alfalfa (Medicago Sativa L.). Foods 2021, 10 (2), 346. https://doi.org/10.3390/foods10020346.
64. Mocan, A.; Carradori, S.; Locatelli, M.; Secci, D.; Cesa, S.; Mollica, A.; Riga, S.; Angeli, A.; Supuran, C. T.; Celia, C.; Di Marzio, L. Bioactive Isoflavones from Pueraria Lobata Root and Starch: Different Extraction Techniques and Carbonic Anhydrase Inhibition. Food and Chemical Toxicology 2018, 112, 441–447. https://doi.org/10.1016/j.fct.2017.08.009.
65. Mangang, K. C. S.; Chakraborty, S.; Deka, S. C. Optimized Microwave-Assisted Extraction of Bioflavonoids from Albizia Myriophylla Bark Using Response Surface Methodology. J Food Sci Technol 2020, 57 (6), 2107–2117. https://doi.org/10.1007/s13197-020-04246-3.
66. Zuluaga, A. M.; Mena-García, A.; Soria Monzón, A. C.; Rada-Mendoza, M.; Chito, D. M.; Ruiz-Matute, A. I.; Sanz, M. L. Microwave Assisted Extraction of Inositols for the Valorization of Legume By-Products. LWT 2020, 133, 109971. https://doi.org/10.1016/j.lwt.2020.109971.
67. Vila Verde, G. M.; Barros, D. A.; Oliveira, M.; Aquino, G.; M. Santos, D.; de Paula, J.; Dias, L.; Piñeiro, M.; M. Pereira, M. A Green Protocol for Microwave-Assisted Extraction of Volatile Oil Terpenes from Pterodon Emarginatus Vogel. (Fabaceae). Molecules 2018, 23 (3), 651. https://doi.org/10.3390/molecules23030651.
68. Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S.; Sairam, K. V. S. S. Evaluation of Enzyme and Microwave-Assisted Conditions on Extraction of Anthocyanins and Total Phenolics from Black Soybean (Glycine Max L.) Seed Coat. International Journal of Biological Macromolecules 2019, 135, 1070–1081. https://doi.org/10.1016/j.ijbiomac.2019.06.034.
69. Izirwan, I.; Munusamy, T. D.; Hamidi, N. H.; Sulaiman, S. Z. Optimization of Microwave-Assisted Extraction of Anthocyanin from Clitoria Ternatea Flowers. IJMERR 2020, 1246–1252. https://doi.org/10.18178/ijmerr.9.9.1246-1252.
70. Huma, Z.; Jayasena, V.; Nasar‐Abbas, S. M.; Imran, M.; Khan, M. K. Process Optimization of Polyphenol Extraction from Carob (Ceratonia Siliqua ) Kibbles Using Microwave‐assisted Technique. J Food Process Preserv 2018, 42 (2), e13450. https://doi.org/10.1111/jfpp.13450.
71. Noviany, N.; Samadi, A.; Yuliyan, N.; Hadi, S.; Aziz, M.; Purwitasari, N.; Mohamad, S.; Ismail, N. N.; Gable, K. P.; Mahmud, T. Structure Characterization and Biological Activity of 2-Arylbenzofurans from an Indonesian Plant, Sesbania Grandiflora (L.) Pers. Phytochemistry Letters 2020, 35, 211–215. https://doi.org/10.1016/j.phytol.2019.12.008.
72. Ahmed, A. S.; Moodley, N.; Eloff, J. N. Bioactive Compounds from the Leaf Extract of Bauhinia Galpinii (Fabaceae) Used as Antidiarrhoeal Therapy in Southern Africa. South African Journal of Botany 2019, 126, 345–353. https://doi.org/10.1016/j.sajb.2019.06.011.
73. Erhabor, J. O.; Omokhua, A. G.; Ondua, M.; Abdalla, M. A.; McGaw, L. J. Pharmacological Evaluation of Hydro-Ethanol and Hot Water Leaf Extracts of Bauhinia Galpinii (Fabaceae): A South African Ethnomedicinal Plant. South African Journal of Botany 2020, 128, 28–34. https://doi.org/10.1016/j.sajb.2019.10.008.
74. Sinan, K. I.; Saftić, L.; Peršurić, Ž.; Pavelić, S. K.; Etienne, O. K.; Picot-Allain, M. C. N.; Mahomoodally, M. F.; Zengin, G. A Comparative Study of the Chemical Composition, Biological and Multivariate Analysis of Crotalaria Retusa L. Stem Barks, Fruits, and Flowers Obtained via Different Extraction Protocols. South African Journal of Botany 2020, 128, 101–108. https://doi.org/10.1016/j.sajb.2019.10.019.
75. Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A. A.; Adhikari, A.; Burman, R.; de Silva, E. D.; Göransson, U.; Hettiarachchi, C. M.; Gunasekera, S. Screening for Bioactive Secondary Metabolites in Sri Lankan Medicinal Plants by Microfractionation and Targeted Isolation of Antimicrobial Flavonoids from Derris Scandens. Journal of Ethnopharmacology 2020, 246, 112158. https://doi.org/10.1016/j.jep.2019.112158.
76. Chen, X.; Xiong, J.; He, Q.; Wang, F. Characterization and Potential Antidiabetic Activity of Proanthocyanidins from the Barks of Acacia Mangium and Larix Gmelinii. Journal of Chemistry 2019, 2019, 1–9. https://doi.org/10.1155/2019/4793047.
77. Navarro del Hierro, J.; Reglero, G.; Martin, D. Chemical Characterization and Bioaccessibility of Bioactive Compounds from Saponin-Rich Extracts and Their Acid-Hydrolysates Obtained from Fenugreek and Quinoa. Foods 2020, 9 (9), 1159. https://doi.org/10.3390/foods9091159.
78. Herrera, T.; Navarro del Hierro, J.; Fornari, T.; Reglero, G.; Martin, D. Acid Hydrolysis of Saponin‐rich Extracts of Quinoa, Lentil, Fenugreek and Soybean to Yield Sapogenin‐rich Extracts and Other Bioactive Compounds. J. Sci. Food Agric. 2019, 99 (6), 3157–3167. https://doi.org/10.1002/jsfa.9531.
79. King, M.; Catranis, C.; Leigh, B. M. Phytochemical and Toxicological Analysis of Albizia falcataria Sawdust. International Wood Products Journal 2013, 232–241. https://doi.org/10.1179/2042645312Y.0000000029.
80. Fotso, G. W.; Kamga, J.; Ngameni, B.; Uesugi, S.; Ohno, M.; Kimura, K.-I.; Momma, H.; Kwon, E.; Furuno, H.; Shiono, Y.; Ingrid, S. K.; Yeboah, S. O.; Ngadjui, B. T. Secondary Metabolites with Antiproliferative Effects from Albizia Glaberrima Var Glabrescens Oliv. (Mimosoideae). Natural Product Research 2017, 31 (17), 1981–1987. https://doi.org/10.1080/14786419.2016.1269097.
81. Wang, X.-D.; Han, Q.-H.; Zhang, J.; Zhang, Q.-Y.; Tu, P.-F.; Liang, H. Three New Triterpenoid Saponins from Albizia Julibrissin. Journal of Asian Natural Products Research 2019, 21 (6), 535–541. https://doi.org/10.1080/10286020.2018.1473385.
82. Han, Q.; Qian, Y.; Wang, X.; Zhang, Q.; Cui, J.; Tu, P.; Liang, H. Oleanane-Type Saponins and Prosapogenins from Albizia Julibrissin and Their Cytotoxic Activities. Phytochemistry 2021, 185, 112674. https://doi.org/10.1016/j.phytochem.2021.112674.
83. Anand, S.; Deighton, M.; Livanos, G.; Morrison, P. D.; Pang, E. C. K.; Mantri, N. Antimicrobial Activity of Agastache Honey and Characterization of Its Bioactive Compounds in Comparison With Important Commercial Honeys. Front. Microbiol. 2019, 10, 263. https://doi.org/10.3389/fmicb.2019.00263.
84. Jæger, D.; Simpson, B. S.; Ndi, C. P.; Jäger, A. K.; Crocoll, C.; Møller, B. L.; Weinstein, P.; Semple, S. J. Biological Activity and LC-MS/MS Profiling of Extracts from the Australian Medicinal Plant Acacia Ligulata (Fabaceae). Natural Product Research 2018, 32 (5), 576–581. https://doi.org/10.1080/14786419.2017.1318383.
85. Macêdo, N. S.; Silveira, Z. de S.; Bezerra, A. H.; Costa, J. G. M. da; Coutinho, H. D. M.; Romano, B.; Capasso, R.; Cunha, F. A. B. da; da Silva, M. V. Caesalpinia Ferrea C. Mart. (Fabaceae) Phytochemistry, Ethnobotany, and Bioactivities: A Review. Molecules 2020, 25 (17), 3831. https://doi.org/10.3390/molecules25173831.
86. Luna, M. S. M.; de Paula, R. A.; Brandão Costa, R. M. P.; dos Anjos, J. V.; da Silva, M. V.; Correia, M. T. S. Bioprospection of Libidibia Ferrea Var. Ferrea: Phytochemical Properties and Antibacterial Activity. South African Journal of Botany 2020, 130, 103–108. https://doi.org/10.1016/j.sajb.2019.12.013.
87. Belay, D.; Kenubih, A.; Yesuf, M.; Kebede, E.; Yayeh, M.; Birhan, M. Antioxidant and Antimicrobial Activity of Solvent Fractions of Calpurnia Aurea (Ait.) Benth. (Fabaceae). JEP 2021, Volume 13, 499–509. https://doi.org/10.2147/JEP.S285872.
88. Ferraz, C. M. dos S.; Santos, A. Q.; Santos, M. de J.; Silva, V. R.; Santos, L. de S.; Soares, M. B. P.; Bezerra, D. P.; de Macedo, G. E. L.; de Paula, V. F.; Queiroz, R. F. Chemical Composition and Antioxidant, Antibacterial and Antiproliferative Activities of Macrolobium Latifolium Vogel (Fabaceae) Stem Bark. South African Journal of Botany 2021, 140, 210–217. https://doi.org/10.1016/j.sajb.2021.04.013.
89. Obistioiu, D.; Cocan, I.; Tîrziu, E.; Herman, V.; Negrea, M.; Cucerzan, A.; Neacsu, A.-G.; Cozma, A. L.; Nichita, I.; Hulea, A.; Radulov, I.; Alexa, E. Phytochemical Profile and Microbiological Activity of Some Plants Belonging to the Fabaceae Family. Antibiotics 2021, 10 (6), 662. https://doi.org/10.3390/antibiotics10060662.
90. Obakiro, S. B.; Kiprop, A.; Kigondu, E.; K’Owino, I.; Odero, M. P.; Manyim, S.; Omara, T.; Namukobe, J.; Owor, R. O.; Gavamukulya, Y.; Bunalema, L. Traditional Medicinal Uses, Phytoconstituents, Bioactivities, and Toxicities of Erythrina Abyssinica Lam. Ex DC. (Fabaceae): A Systematic Review. Evidence-Based Complementary and Alternative Medicine 2021, 2021, 1–43. https://doi.org/10.1155/2021/5513484.
91. Sadgrove, N. J.; Oliveira, T. B.; Khumalo, G. P.; van Vuuren, S. F.; van Wyk, B.-E. Antimicrobial Isoflavones and Derivatives from Erythrina (Fabaceae): Structure Activity Perspective (Sar & Qsar) on Experimental and Mined Values Against Staphylococcus Aureus. Antibiotics 2020, 9 (5), 223. https://doi.org/10.3390/antibiotics9050223.
92. Heydari̇, H.; Saltan İŞcan, G.; Eryilmaz, M.; Bahadir Acikara, Ö.; Yilmaz Sarialtin, S.; Teki̇N, M.; Çoban, T. Antimicrobial and Anti-Inflammatory Activity of Some Lathyrus L. (Fabaceae) Species Growing in Turkey. tjps 2019, 16 (2), 240–245. https://doi.org/10.4274/tjps.galenos.2018.86719.
93. do Nascimento, M. N. G.; Machado Martins, M.; Scalon Cunha, L. C.; de Souza Santos, P.; Goulart, L. R.; de Souza Silva, T.; Gomes Martins, C. H.; de Morais, S. A. L.; Pivatto, M. Antimicrobial and Cytotoxic Activities of Senna and Cassia Species (Fabaceae) Extracts. Industrial Crops and Products 2020, 148, 112081. https://doi.org/10.1016/j.indcrop.2019.112081.
94. Dzoyem, J. P.; Tchamgoue, J.; Tchouankeu, J. C.; Kouam, S. F.; Choudhary, M. I.; Bakowsky, U. Antibacterial Activity and Cytotoxicity of Flavonoids Compounds Isolated from Pseudarthria Hookeri Wight & Arn. (Fabaceae). South African Journal of Botany 2018, 114, 100–103. https://doi.org/10.1016/j.sajb.2017.11.001.
95. Sinan, K. I.; Mahomoodally, M. F.; Eyupoglu, O. E.; Etienne, O. K.; Sadeer, N. B.; Ak, G.; Behl, T.; Zengin, G. HPLC-FRAP Methodology and Biological Activities of Different Stem Bark Extracts of Cajanus Cajan (L.) Millsp. Journal of Pharmaceutical and Biomedical Analysis 2021, 192, 113678. https://doi.org/10.1016/j.jpba.2020.113678.
96. Khan, S.; Nazir, M.; Raiz, N.; Saleem, M.; Zengin, G.; Fazal, G.; Saleem, H.; Mukhtar, M.; Tousif, M. I.; Tareen, R. B.; Abdallah, H. H.; Mahomoodally, F. M. Phytochemical Profiling, in Vitro Biological Properties and in Silico Studies on Caragana Ambigua Stocks (Fabaceae): A Comprehensive Approach. Industrial Crops and Products 2019, 131, 117–124. https://doi.org/10.1016/j.indcrop.2019.01.044.
97. Ali, L.; Khan, S.; Nazir, M.; Raiz, N.; Naz, S.; Zengin, G.; Mukhtar, M.; Parveen, S.; Shazmeen, N.; Saleem, M.; Tareen, R. B. Chemical Profiling, in Vitro Biological Activities and Pearson Correlation between Phenolic Contents and Antioxidant Activities of Caragana Brachyantha Rech.f. South African Journal of Botany 2021, 140, 189–193. https://doi.org/10.1016/j.sajb.2021.04.009.
98. Prasathkumar, M.; Raja, K.; Vasanth, K.; Khusro, A.; Sadhasivam, S.; Sahibzada, M. U. K.; Gawwad, M. R. A.; Al Farraj, D. A.; Elshikh, M. S. Phytochemical Screening and in Vitro Antibacterial, Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Wound Healing Attributes of Senna Auriculata (L.) Roxb. Leaves. Arabian Journal of Chemistry 2021, 14 (9), 103345.
99. Indrianingsih, A. W.; Wulanjati, M. P.; Windarsih, A.; Bhattacharjya, D. K.; Suzuki, T.; Katayama, T. In Vitro Studies of Antioxidant, Antidiabetic, and Antibacterial Activities of Theobroma Cacao, Anonna Muricata and Clitoria Ternatea. Biocatalysis and Agricultural Biotechnology 2021, 33, 101995. https://doi.org/10.1016/j.bcab.2021.101995.
100. Al-Haidari, R. A.; Al-Oqail, M. M. New Benzoic Acid Derivatives from Cassia Italica Growing in Saudi Arabia and Their Antioxidant Activity. Saudi Pharmaceutical Journal 2020, 28 (9), 1112–1117. https://doi.org/10.1016/j.jsps.2020.07.012.
101. Kurt-Celep, İ.; Zengin, G.; Sinan, K. I.; Ak, G.; Elbasan, F.; Yıldıztugay, E.; Maggi, F.; Caprioli, G.; Angeloni, S.; Sharmeen, J. B.; Mahomoodally, M. F. Comprehensive Evaluation of Two Astragalus Species (A. Campylosema and A. Hirsutus) Based on Biological, Toxicological Properties and Chemical Profiling. Food and Chemical Toxicology 2021, 154, 112330. https://doi.org/10.1016/j.fct.2021.112330.
102. 132. Mboussaah, A. D. K.; Lateef, M.; Fodouop, S. P. C.; Nkengfack, A. E.; Lenta, B. N.; Ali, M. S.; Tapondjou, L. A. Intortins A–C: New Isoflavonoids from the Roots of Desmodiumintortum(Fabaceae). Chemical Data Collections 2021, 33, 100678. https://doi.org/10.1016/j.cdc.2021.100678.
103. Bottamedi, M.; Pereira dos Santos Nascimento, M. V.; Fratoni, E.; Kinoshita Moon, Y. J.; Faqueti, L.; Tizziani, T.; Sandjo, L. P.; Siminski, A.; Dalmarco, E. M.; Mendes, B. G. Antioxidant and Anti-Inflammatory Action (in Vivo and in Vitro) from the Trunk Barks of Cabreúva (Myrocarpus Frondosus Allemao, Fabaceae). Journal of Ethnopharmacology 2021, 267, 113545. https://doi.org/10.1016/j.jep.2020.113545.
104. Król-Grzymała, A.; Amarowicz, R. Phenolic Compounds of Soybean Seeds from Two European Countries and Their Antioxidant Properties. Molecules 2020, 25 (9), 2075. https://doi.org/10.3390/molecules25092075.
105. Rocchetti, G.; Zhang, L.; Bocchi, S.; Giuberti, G.; Ak, G.; Elbasan, F.; Yıldıztugay, E.; Ceylan, R.; Picot-Allain, M. C. N.; Mahomoodally, M. F.; Lucini, L.; Zengin, G. The Functional Potential of Nine Allium Species Related to Their Untargeted Phytochemical Characterization, Antioxidant Capacity and Enzyme Inhibitory Ability. Food Chemistry 2022, 368, 130782. https://doi.org/10.1016/j.foodchem.2021.130782.
106. Zonyane, S.; Fawole, O. A.; la Grange, C.; Stander, M. A.; Opara, U. L.; Makunga, N. P. The Implication of Chemotypic Variation on the Antioxidant and Anticancer Activities of Sutherlandia Frutescens (L.) R.Br. (Fabaceae) from Different Geographic Locations. Antioxidants 2020, 9 (2), 152. https://doi.org/10.3390/antiox9020152.
107. Gbaweng, A. J. Y.; Daïrou, H.; Zingué, S.; Emmanuel, T.; Tchinda, A. T.; Frédérich, M.; Mbafor, J. T. Excelsanone, a New Isoflavonoid from Erythrina Excelsa (Fabaceae), with in Vitro Antioxidant and in Vitro Cytotoxic Effects on Prostate Cancer Cells Lines. Natural Product Research 2020, 34 (5), 659–667. https://doi.org/10.1080/14786419.2018.1495639.
108. Okoro, E. E.; Maharjan, R.; Jabeen, A.; Ahmad, M. S.; Azhar, M.; Shehla, N.; Zaman, W.; Shams, S.; Osoniyi, O. R.; Onajobi, F. D.; Choudhary, M. I. Isoflavanquinones from Abrus Precatorius Roots with Their Antiproliferative and Anti-Inflammatory Effects. Phytochemistry 2021, 187, 112743. https://doi.org/10.1016/j.phytochem.2021.112743
