Review: Melastoma malabathricum Natural Compounds as Inhibitors of Resistant Bacterial Development
DOI:
https://doi.org/10.22437/chp.v9i1.41114Keywords:
Antibacterial activity, Melastoma malabathricum, natural compounds, pharmacology, traditional medicineAbstract
The abundance of natural medicines in nature is very capable of being used and developed in various lives both individually and in combination in the modern medical field. Various developments and treatments as well as the discovery of new concepts will be able to interact with human physiology. One plant that has the potential to be developed is Melastoma malabathricum, also known as senduduk. This plant from the Melastomataceae family is easily found in tropical Asia and has long been used as an herb in traditional Chinese medicine. Based on the data collected, various studies have shown the pharmacological bioactivity of Melastoma malabathricum which has antibacterial potential and is able to fight resistant bacteria. Chemicals in this plant, including flavonoids, terpenoids, alkaloids, and steroids have been detected and shown to be inhibitors of bacterial growth, including resistant bacteria.
Downloads
References
[1] E. Couradeau, B. Karim, M. David, G. Emmanuelle, K. Jozef, T. Rosaluz, and L. G. Purificacion, (2011). “Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from The Alkaline Lake Alchichica (Mexico),” PLoS One”, 6 (12):1-16. 10.1371/journal.pone.0028767
[2] N. K. Fitri and A. R. Kusumawardhani, (2023). “Review artikel: Uji Efektivitas Ekstrak Daun Teh Hijau sebagai Antibakteri,” Journal of Pharmaceutical and Sciences, 6 (3):1100-1105. 10.36490/journal-jps.com.v6i3.181
[3] R. J. Singh, A. Lebeda, and A. O. Tucker, (2015). “Medicinal Plants-Nature’s Pharmacy,” in Genetic Resources, Chromosome Engineering, and Crop Improvement Series: Medicinal Plants, 6:13–51.
[4] S. Mushtaq, B. H. Abbasi, B. Uzair, and R. Abbasi, (2018). “Natural Products as Reservoirs of Novel Therapeutic Agents,” EXCLI J, 17:420–451. 10.17179/excli2018-1174.
[5] N. Chaachouay and L. Zidane. (2024). “Plant-Derived Natural Products: A Source for Drug Discovery and Development,” Drugs and Drug Candidates, 3(1):184–207. 10.3390/ddc3010011.
[6] X. S. Zheng, T.-F. Chan, and H. H. Zhou. (2004). “Genetic and Genomic Approaches to Identify and Study the Targets of Bioactive Small Molecules,” Chem Biol, 11:609–618. 10.1016/j.
[7] P. Wangchuk. (2018). “Therapeutic Applications of Natural Products in Herbal Medicines, Biodiscovery Programs, and Biomedicine”, Journal of Biologically Active Products from Nature, 8(1):1–20. 10.1080/22311866.2018.1426495.
[8] L. K. Singh, T. Karlo, and A. Pandey. (2014). “Performance of Fruit Extract of Melastoma malabathricum L. as Sensitizer in DSSCs,” Spectrochim Acta A Mol Biomol Spectrosc, 18:938–943. 10.1016/j.saa.2013.09.075.
[9] R. Abou Assi, Y. Darwis, I. M. Abdulbaqi, A. A. khan, L. Vuanghao, and M. H. Laghari. (2015). “Morinda citrifolia (Noni): A Comprehensive Review on Its Industrial Uses, Pharmacological Activities, and Clinical Trials,” Arabian Journal of Chemistry, 10 (5):691–707. 10.1016/j.arabjc.2015.06.018.
[10] A. Khatun et al. (2014). “Cytotoxicity Potentials of Eleven Bangladeshi Medicinal Plants,” Scientific World Journal. 10.1155/2014/913127.
[11] M. M. Khan, M. H. Harunsani, A. L. Tan, M. Hojamberdiev, S. Azamay, and N. Ahmad. (2020). “Antibacterial activities of zinc oxide and Mn-doped zinc oxide synthesized using Melastoma malabathricum (L.) leaf extract,” Bioprocess Biosyst Eng, 43 (8):1499–1508. 10.1007/s00449-020-02343-3.
[12] R. Novelni, M. Yupelmi, D. Agustina, N. R. Putri, and P. Minerva. (2023). “Antibacterial activity of the ethanol extract of senduduk leaves (Melastoma malabathricum L.) against staphylococcus aureus and Propionibacterium acnes,” IOP Conf Ser Earth Environ Sci, 1228(1). 10.1088/1755-1315/1228/1/012041. –
[13] L. Barnes V, D. M. Heithoff, S. P. Mahan, J. K. House, and M. J. Mahan. (2023). “Antimicrobial susceptibility testing to evaluate minimum inhibitory concentration values of clinically relevant antibiotics,” STAR Protoc, 4 (3). 10.1016/j.xpro.2023.102512.
[14] J. M. Wentzel, L. J. Biggs, M. Van Vuuren, and J. Wentzel. (2022). “Comparing the minimum inhibitory and mutant prevention concentrations of selected antibiotics against animal isolates of Pasteurella multocida and Salmonella typhimurium,” .10.4102/ojvr.
[15] A. S. Hasan et al. (2023). “Rising Resistance In Uropathogens With An Indication Of Nitrofurantoin Mic Creep,” Journal of Ayub Medical College, 35 (1):54–59. 10.55519/JAMC-01-11050.
[16] Y. D.D., A. P.G., D. T.D., and A. M.S., “Different Classes of Antibiotics and Bacterial Mechanisms of Antibiotic Resistance,” Микробиология Және Вирусология, 3 (46):79–105. 10.53729/MV-AS.2024.03.04.
[17] P. Apridamayanti, R. Sari, A. Rachmaningtyas, and V. Aranthi, (2021). “Antioxidant, Antibacterial Activity and FICI (Fractional Inhibitory Concentration Index) of Ethanolic Extract of Melastoma malabathricum Leaves with Amoxicillin Against Pathogenic Bacteria,” Nusantara Bioscience, 13 (2):140–147, 10.13057/nusbiosci/n130202.
[18] R. Sari, L. Pratiwi, and P. Apridamayanti, (2022). “The Highest Dosage Combination Activity Screening from the Leaf Fraction of Melastoma malabathricum with Antibiotic Gentamicin and Ciprofloxacin,” J Pharmacopuncture, 25, (2):101–105. 10.3831/KPI.2022.25.2.101.
[19] Isnaini, Y. B. Lia, M. Noor, S. B. Dimas, F. Ririn, S. Nanda, F. B. Irawati, S. Wuri, and D. R. Wiresa, (2018). “Antibacterial Activities of Ethanol Extract of Karamunting (Melastoma malabathricum L.) Leaf and Flowers on Salmonella typhi, Escherichia coli, Staphylococcus aureus,” BROMO Conference (BROMO 2018)-Symposium on Narutal Product and Biodiversity, 1–3. 10.5220/0008362003160318
[20] M. N. Diris, A. M. Basri, F. Metali, N. Ahmad, and H. Taha, (2016). “Phytochemicals and Antimicrobial Activities of Melastoma malabathricum and Melastoma beccarianum Leaf Crude Extracts,” Research Journal of Phytochemistry, 11(1):35–41, 10.3923/rjphyto.2017.35.41.
[21] S. B. Sarbadhikary, B. Pal, and N. C. Mandal, (2016). “Antimicrobial and antioxidant activities of two endophytic fungi isolated from Melastoma malabathricum L. leaves,” International Journal of Current Pharmaceutical Review and Research, 8(3):88–92
[22] S. Hainil, H. Rachdiati, and D. Prawita, (2021). “Phytochemical Screening and Antibacterial Activity of Senduduk Leaves (Melastoma malabathricum L.),” 2nd International Conference on Contemporary Science and Clinical Pharmacy, Universitas Sam Ratulangi, 211–213. 10.35790/ebm.4.1.2016.11287.
[23] N. M. Sari, I. Wijaya Kusuma, R. Amirta, and N. I. Fitriah, (2021). “Aktivitas Antioksidan dan Antibakteri Bagian Ranting dan Batang Tumbuhan Karamunting (Melastoma malabathricum),” Perennial, 7 (2):62–66. 10.24259/perennial.v17i2.14547
[24] R. M. Hanafiah, W. S. Aqma, W. A. Yaacob, Z. Said, and N. Ibrahim, (2015). “Antibacterial and Biofilm Inhibition Activities of Melastoma malabathricum Stem Bark Extract Against Streptococcus mutans,” Malays J Microbiol, 11 (2):199–206, 2015.
[25] Y. Yulanda and L. Riniwasih, (2017). “Antibacterial Activity Test of 96% Ethanol Extract of Karamunting Root (Melastoma malabathricum L.) Against Escherichia coli Bacteria,” Indonesia Natural Research Pharmaceutical Journal, 2 (1):2502–8421
[26] Md. A. Kader, Md. M. Rahman, S. Mahmud, Md. S. Khan, S. Mukta, and F. T. Zohora, (2023). “A comparative study on the Antihyperlipidemic and antibacterial potency of the shoot and flower extracts of Melastoma malabathricum Linn’s,” Clinical Phytoscience, 9 (1). 10.1186/s40816-023-00355-6.
[27] K. C. Wong, D. M. H. Ali, and P. L. Boey, (2012). “Chemical Constituents and Antibacterial Activity of Melastoma malabathricum L.,” Nat Prod Res, 26(7):609-618. 10.1080/14786419.2010.538395.
[28] Isnaini, I. K. Oktaviyanti, and L. Y. Budiarti, (2023). “Antibacterial and Wound Healing Activity of Ethanolic Extract Melastoma malabathricum L,” Res J Pharm Technol, 16(5):2210-2214. 10.52711/0974-360X.2023.00363.
[29] S. N. Che Omar, J. Ong Abdullah, K. A. Khairoji, S. Chin Chin, and M. Hamid, (2013). “Effects of Flower and Fruit Extracts of Melastoma malabathricum Linn. on Growth of Pathogenic Bacteria: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium,” Evidence-based Complementary and Alternative Medicine, 2013 (I). 10.1155/2013/459089.
[30] S. N. C. Omar, J. O. Abdullah, K. A. Khairoji, S. C. Chin, and M. Hamid, (2012). “Potentials of Melastoma malabathricum Linn. Flower and Fruit Extracts as Antimicrobial Infusions,” Am J Plant Sci, 3(8):1127-1134. 10.4236/ajps.2012.38136.
[31] Z. A. Zakaria et al. (2006), “Antinociceptive, anti-inflammatory and antipyretic properties of Melastoma malabathricum leaves aqueous extract in experimental animals,” Can J Physiol Pharmacol, 84 (12):1291-1299. 10.1139/Y06-083.
[32] Theresia Avilla Nor, Desi Indriarini, and Sangguana Marten Jacobus Koamesah, (2018). “Uji Aktivitas Antibakteri Ekstrak Etanol Daun Pepaya (carica papaya L) Terhadap Pertumbuhan Bakteri Escherichia coli Secara In Vitro,” Cendana Medical Journal, 15 (5):327-377.
[33] G. Donadio et al. (2021). “Interactions with microbial proteins driving the antibacterial activity of flavonoids,” Pharmaceutics, 13 (5):660. 10.3390/pharmaceutics13050660.
[34] A. Faradiba, A. Gunadi, and D. Praharani, (2016). “Daya Antibakteri Infusa Daun Asam Jawa (Tamarindus indica Linn) terhadap Streptococcus mutans (Antibacterial Activity of Asam Jawa Leaf Infuse (Tamarindus indica Linn) against Streptococcus mutans,” e-Jurnal Pustaka Kesehatan, 4(1):55-60.
[35] S. Septiani, E. N. Dewi, and I. Wijayanti, (2017). “Antibacterial Activities of Seagrass Extracts (Cymodocea rotundata) Against Staphylococcus aureus and Escherichia coli,” SAINTEK PERIKANAN : Indonesian Journal of Fisheries Science and Technology, 13(1):1-6. 10.14710/ijfst.13.1.1-6.
[36] A. Royani, M. Hanafi, H. Julistiono, and A. Manaf, (2023). “The Total Phenolic and Flavonoid Contents of Aloe vera and Morinda citrifolia Extracts as Antibacterial Material Against Pseudomonas aeruginosa,” Mater Today Proc, 72:2796-2802. 10.1016/j.matpr.2022.06.466.
[37] K. Sudarmi, I. B. G. Darmayasa, and I. K. Muksin, (2017), “Phytochemical and Inhibition of Juwet Leaf Extract (Syzygium cumini) on Growth Escherichia coli and Staphylococcus aureus ATCC,” SIMBIOSIS Journal of Biological Sciences, 5(2):47. 10.24843/jsimbiosis.2017.v05.i02.p03.
[38] N. M. Sari, H. Kuspradini, R. Amirta, and I. W. Kusuma, (2018). “Antioxidant Activity of An Invasive Plant, Melastoma malabathricum and Its Potential as Herbal Tea Product,” IOP Conf Ser Earth Environ Sci, 144 (1). 10.1088/1755-1315/144/1/012029.
[39] M. Heinrich, J. Mah, and V. Amirkia, (2021). “Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An update and Forward Look,”. MDPI AG. 10.3390/molecules26071836.
[40] M. A. Lacaille-Dubois and M. F. Melzig, (2016). “Saponins: Current Progress and Perspectives,”, Georg Thieme Verlag. 10.1055/s-0042-119776.
[41] N. Neumann, M. Honke, M. Povydysh, S. Guenther, and C. Schulze, (2022). “Evaluating Tannins and Flavonoids from Traditionally Used Medicinal Plants with Biofilm Inhibitory Effects against MRGN E. coli,” Molecules, 27 (7). 10.3390/molecules27072284.
[42] I. H. N. Bassolé and H. R. Juliani, (2012). “Essential Oils in Combination and Their Antimicrobial Properties,”. Molecules. 10.3390/molecules17043989.
[43] A. R. Gomes, A. S. Pires, F. M. F. Roleira, and E. J. Tavares-da-Silva, (2023). “The Structural Diversity and Biological Activity of Steroid Oximes,”. MDPI. 10.3390/molecules28041690.
[44] P. Hikisz, P. Wawrzyniak, A. A. Adamus-Grabicka, D. Jacenik, and E. Budzisz, (2024). “Evaluation of In Vitro Biological Activity of Flavanone/Chromanone Derivatives: Molecular Analysis of Anticancer Mechanisms in Colorectal Cancer,” Int J Mol Sci, 25 (23). 10.3390/ijms252312985.
[45] D. W. Gerard, (2005). “Bacterial Resistance to Antibiotics: Enzymatic Degradation and Modification,” Advanced Drug Delivery Reviews, 57 (10): 1451-1470. 10.1016/j.addr.2005.04.002.
[46] D. F. Pancu et al., (2021). “Antibiotics: Conventional therapy and natural compounds with antibacterial activity-a pharmaco-toxicological screening,” Antibiotics, 10 (4). 10.3390/antibiotics10040401.
[47] S. Xu et al., (2024). “Plant Flavonoids with Antimicrobial Activity against Methicillin-Resistant Staphylococcus aureus (MRSA),”. American Chemical Society. 10.1021/acsinfecdis.4c00292.
[48] P. D. Gupta and T. J. Birdi. (2017), “Development of botanicals to combat antibiotic resistance,” J Ayurveda Integr Med, 8 (4): 266–275. 10.1016/j.jaim.2017.05.004.
[49] D. M. Pott, S. Osorio, and J. G. Vallarino. (2019), “From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit,” Front Plant Sci, 10. 10.3389/fpls.2019.00835.
[50] S. Pagare, M. Bhatia, N. Tripathi, S. Pagare, and Y. K. Bansal. (2015), “Secondary metabolites of plants and their role: Overview,” Curr Trends Biotechnol Pharm, 9 (3):293–304.
[51] E. Narbona, M. L. Buide, I. Casimiro-Soriguer, and J. C. del Valle, (2014). “Flower color polymorphisms: Causes and evolutionary implications,” Ecosistemas, 23 (3):36–47. 10.7818/ECOS.2014.23-3.06.
[52] A. Piasecka, N. Jedrzejczak-Rey, and P. Bednarek, (2015). “Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals,” New Phytologist, 206 (3): 948–964. 10.1111/nph.13325.
[53] S. Kumar and A. K. Pandey, (2013). “Chemistry and biological activities of flavonoids: An overview,” The Scientific World Journal. 10.1155/2013/162750.
[54] S. I. Ahmed et al. (2016), “Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl,” BMC Complement Altern Med, 16 (1):1–9. 10.1186/s12906-016-1443-z.
[55] J. Baruah, L. Shantikumar Singh, T. Salvia, and J. Sarma, (2024). “Antimicrobial resistance a continued global threat to public health – A perspective and mitigation strategies,” J Lab Physicians, 16:429. 10.25259/JLP_24_2024.
[56] G. Irenuesz, B. Rafal, and K. Jaroslaw, (2019). “Comprehensive review of antimicrobial activities of plant flavonoids,” Phytochemistry Reviews, 18 (1): 241-272. 10.1007/s11101-018-9591-z.
[57] S. Tang et al. (2024), “Structural insights and biological activities of flavonoids: Implications for novel applications,”, John Wiley and Sons Inc. 10.1002/fft2.494.
[58] N. F. Shamsudin et al. (2022), “Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation,” MDPI. 10.3390/molecules27041149.
[59] W. Zhou, C. Peng, D. Wang, J. Li, Z. Tu, and L. Zhang, (2022). “Interaction Mechanism between OVA and Flavonoids with Different Hydroxyl Groups on B-Ring and Effect on Antioxidant Activity,” Foods, 11 (9). 10.3390/foods11091302.
[60] Y. Fang et al. (2016). “3D-QSAR and do)cking studies of flavonoids as potent Escherichia coli inhibitors,” Sci Rep, 6. 10.1038/srep23634.
[61] M. Osorio et al. (2021), “Prenylated flavonoids with potential antimicrobial activity: Synthesis, biological activity, and in silico study,” Int J Mol Sci, 22 (11). 10.3390/ijms22115472.
[62] I. Isnaini, A. Yasmina, and H. W. Nur’amin, (2019), “Antioxidant and Cytotoxicity Activities of Karamunting (Melastoma malabathricum L.) Fruit Ethanolic Extract and Quercetin,” Asian Pacific Journal of Cancer Prevention, 20 (2):639–643, 10.31557/APJCP.2019.20.2.639.
[63] D. Suleiman, A. Masa, ud Idris, and U. Idris Ibrahim, (2018). “Review of Pharmacognostic Features, Phytochemical Constituents and Pharmacological Actions of Melastoma malabathricum LINN (Melastomaceae),”. www.nijophasr.com
[64] D. Ming et al. (2017), “Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus,” Front Microbiol, 8. 10.3389/fmicb.2017.02263.
[65] D. Mayasari, Y. B. Murti, S. U. T. Pratiwi, and S. Sudarsono, (2022). “Antibacterial Activity and TLC-Densitometric Analysis of Secondary Metabolites in the Leaves of the Traditional Herb, Melastoma malabathricum L.,” Borneo Journal of Pharmacy, 5 (4):334–344. 10.33084/bjop.v5i4.3818.
[66] E. D. Obi, D. Mbatuegwu, J. A. Yentumi, and O. O. Ajayi, (2024), “AIC50: An Innovative Machine Learning Approach to Precise IC50 Prediction,” Advances in Multidisciplinary & Scientific Research Journal Publication, 12 (4):31–44, 10.22624/AIMS/MATHS/V12N4P3.
[67] P. Roszkowski et al. (2024). “Antibacterial and anti-biofilm activities of new fluoroquinolone derivatives coupled with nitrogen-based heterocycles,” Biomedicine and Pharmacotherapy, 179, 10.1016/j.biopha.2024.117439.
[68] Y. Qin, L. Xu, Y. Teng, Y. Wang, and P. Ma, (2021), “Discovery of novel antibacterial agents: Recent developments in D-alanyl-D-alanine ligase inhibitors,” John Wiley and Sons Inc. 10.1111/cbdd.13899.
[69] Y. Zhang et al. (2022), “Discovery of Quercetin and Its Analogs as Potent OXA-48 Beta-Lactamase Inhibitors,” Front Pharmacol, 13, 10.3389/fphar.2022.926104.
[70] E. J. Carrillo-Martinez, F. Y. Flores-Hernández, A. M. Salazar-Montes, H. F. Nario-Chaidez, and L. D. Hernández-Ortega, (2024). “Quercetin, a Flavonoid with Great Pharmacological Capacity,”. Multidisciplinary Digital Publishing Institute (MDPI). 10.3390/molecules29051000.
[71] U. Hussain, S. S. Siva, K. D. Lakshman, V. Ramakrishna, S. V. Rajender, R. K. Janardhan, S. G. Gajanan, R. S. Adinarayana, K. N. B. Vijaya, C. K. Seong, and R. K. Rama. (2024), “Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity,” Sci Rep, 14 (1): 1-11. 10.1038/s41598-024-69044-9.
[72] M. Ivanov et al. (2022), “Polyphenols as Inhibitors of Antibiotic Resistant Bacteria—Mechanisms Underlying Rutin Interference with Bacterial Virulence,” Pharmaceuticals, 15 (3). 10.3390/ph15030385.
[73] H. Qanash, A. M. H. Al-Rajhi, M. N. Almashjary, A. A. Basabrain, M. S. Hazzazi, and T. M. Abdelghany, (2023). “Inhibitory potential of rutin and rutin nano-crystals against Helicobacter pylori, colon cancer, hemolysis and Butyrylcholinesterase in vitro and in silico,” Appl Biol Chem, 66 (1). 10.1186/s13765-023-00832-z.
[74] N. Dudareva, A. Klempien, J. K. Muhlemann, and I. Kaplan, (2013), “Biosynthesis, function and metabolic engineering of plant volatile organic compounds,” New Phytologist, 198 (1): 16–32, 10.1111/nph.12145.
[75] N. A. Mahizan et al. (2019), “Terpene Derivatives as A Potential Agent Against Antimicrobial Resistance (AMR) Pathogens,”, MDPI AG. 10.3390/molecules24142631.
[76] S. Fontanay, M. Grare, J. Mayer, C. Finance, and R. E. Duval, (2008) “Ursolic, oleanolic and betulinic acids: Antibacterial spectra and selectivity indexes,” J Ethnopharmacol, 120 (2):272–276, 10.1016/j.jep.2008.09.001.
[77] F. Zhou et al. (2007), “Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella Typhimurium,” J Food Prot, 70 (7): 1704–1709, 10.4315/0362-028X-70.7.1704.
[78] F. Nazzaro, F. Fratianni, L. De Martino, R. Coppola, and V. De Feo, (2013), “Effect of essential oils on pathogenic bacteria,” Pharmaceuticals, 6 (12):1451–1474, 10.3390/ph6121451.
[79] A. B. García, J. M. Viñuela-Prieto, L. López-González, and F. J. Candel, (2017), “Correlation between resistance mechanisms in Staphylococcus aureus and cell wall and septum thickening,” Infect Drug Resist, 10:353–356, 10.2147/IDR.S146748.
[80] J. Davies, (1996), “Origins and evolution of antibiotic resistance.,” Microbiologia, 12 (1): 9–16, 10.1128/mmbr.00016-10.
[81] J. L. Martinez, (2014), “General Principles of Antibiotic Resistance in Bacteria,” Elsevier Ltd. 10.1016/j.ddtec.2014.02.001.
[82] W. C Reygaert, (2018), “An overview of the antimicrobial resistance mechanisms of bacteria,” AIMS Microbiol, 4 (3): 482–501, 10.3934/microbiol.2018.3.482.
[83] B. Ergüden, (2021). “Phenol group of terpenoids is crucial for antibacterial activity upon ion leakage,” Lett Appl Microbiol. 73 (4): 438–445, 10.1111/lam.13529.
[84] H. S. Cheema, A. Maurya, S. Kumar, V. K. Pandey, and R. M. Singh, “Antibiotic Potentiation Through Phytochemical-Based Efflux Pump Inhibitors to Combat Multidrug Resistance Bacteria,” Med Chem (Los Angeles), vol. 20, pp. 557–575, 2024.
[85] J. Oliveira E Nogueira et al. (2021), “Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus,” FEMS Microbiol Lett, 368 (9). 10.1093/femsle/fnab052.
[86] B. Li, S. B. Vik, and Y. Tu, (2012), “Theaflavins inhibit the ATP synthase and the respiratory chain without increasing superoxide production,” J Nutr Biochem, 23 (8): 953–960, 10.1016/j.jnutbio.2011.05.001.
[87] H. Tang et al. (2020), “Triterpenoid acids isolated from Schinus terebinthifolia fruits reduce Staphylococcus aureus virulence and abate dermonecrosis,” Sci Rep, 10 (1). 10.1038/s41598-020-65080-3.
[88] M. R. Tapia-Rodriguez, E. U. Cantu-Soto, F. J. Vazquez-Armenta, A. T. Bernal-Mercado, and J. F. Ayala-Zavala, (2023), “Inhibition of Acinetobacter baumannii Biofilm Formation by Terpenes from Oregano (Lippia graveolens) Essential Oil,” Antibiotics, 12 (10). 10.3390/antibiotics12101539.
[89] A. C. Khanashyam, M. A. Shanker, P. E. Thomas, K. S. Babu, and N. P. Nirmal, (2023), “Chapter 23 - Phytochemicals in biofilm inhibition. In S. Pati, T. Sarkar, and D. Lahiri (Eds.),” Recent Frontiers of Phytochemicals, Elsevier, 397–412. 10.1016/B978-0-443-19143-5.00018-9.
[90] Y. Zang, R. Feng, and X.-W. Li, (2024), “Recent Advances of Terpenoids with Intriguing Chemical Skeletons and Biological Activities,” Chin J Chem, 10.1002/cjoc.202400697.
[91] A. C. Guimarães et al. (2019), “Antibacterial activity of terpenes and terpenoids present in essential oils,” Molecules, 24 (13). 10.3390/molecules24132471.
[92] H. M. Sirat, D. Susanti, F. Ahmad, H. Takayama, and M. Kitajima, (2010), “Amides, Triterpene and Flavonoids from The Leaves of Melastoma malabathricum L.,” J Nat Med, 64 (4):492–495, 10.1007/s11418-010-0431-8.
[93] D. Susanti, H. M. Sirat, A. Farediah, H. M. Sirat, F. Ahmad, and R. M. Ali, (2008). “Bioactive Constituents from The Leaves of Melastoma malabathricum L,” https://www.researchgate.net/publication/268383347
[94] H. C. Ren, J. Zhang, and H. Liang, (2018), “Two new p-coumaroylated sesquiterpenoids from Pilea cavaleriei,” J Asian Nat Prod Res, 20 (2):109–116, 10.1080/10286020.2017.1320990.
[95] Y. Yu et al. (2018), “Productive Amyrin Synthases for Efficient α-Amyrin Synthesis in Engineered Saccharomyces cerevisiae,” ACS Synth Biol, 7 (10):2391–2402, 10.1021/acssynbio.8b00176.
[96] X. Wang et al. (2024), “Exploring the Biomedical Potential of Terpenoid Alkaloids: Sources, Structures, and Activities,” 10.3390/molecules29091968.
[97] M. Raju, S. R. Sirasanagandla, Y. Bouchareb, C. K. Woon, V. P. Veeraraghavan, and S. Jayaraman, (2024), “Mechanistic Overview on the Therapeutic Potential of Alkaloids in Combating Non-small Cell Lung Carcinoma,” The Natural Product Journal, 10.2174/0122103155322306241021043330.
[98] Y. Yan, X. Li, C. Zhang, L. Lv, B. Gao, and M. Li, (2021), “Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review,” doi: 10.3390/antibiotics.
[99] J. M. Boberek, J. Stach, and L. Good, (2010), “Genetic Evidence for Inhibition of Bacterial Division Protein FtsZ by Berberine,” PLoS One, 5 (10):e13745, https://doi.org/10.1371/journal.pone.0013745.
[100] R. Gonzalez-Vazquez et al. (2024), “Detection of mecA Genes in Hospital-Acquired MRSA and SOSA Strains Associated with Biofilm Formation,” Pathogens, 13 (3), 10.3390/pathogens13030212.
[101] J. Cai et al. (2024), “Membrane Damage and Metabolic Disruption as the Mechanisms of Linalool against Pseudomonas fragi: An Amino Acid Metabolomics Study,” Foods, v 13 (16). 10.3390/foods13162501.
[102] M. C. Almeida et al. (2023). “Fumiquinazoline-Related Alkaloids with Antibacterial, Anti-Biofilm and Efflux Pump Inhibition Properties,” MDPI AG, p. 43. 10.3390/ecmc2022-13440.
[103] J. Jewboonchu et al. (2022), “Atomistic insight and modeled elucidation of conessine towards Pseudomonas aeruginosa efflux pump,” J Biomol Struct Dyn, 40 (4):1480–1489. 10.1080/07391102.2020.1828169.
[104] W. Kong, Y. Zhao, X. Xiao, C. Jin, Y. Liu, and Z. Li, (2009). “Comparison of Anti-bacterial Activity of Four Kinds of Alka-loids in Rhizoma Coptidis Based on Microcalorimetry,” Chinese Journal of Chemistry, 27 (6), 1186-1190. 10.1002/cjoc.200990199.
[105] K. K. Mak et al. (2022), “Anti-Inflammatory Effects of Auranamide and Patriscabratine—Mechanisms and In Silico Studies,” Molecules, 27 (15). 10.3390/molecules27154992.
[106] Y. Lei, Y. Yuanshuai, W. Zhiqiang, W. Jian, and S. Tie-min, (2012), “Antitumor activity of patriscabratine based on a natural product consensus pharmacophore strategy,” Journal of Shenyang Pharmaceutical University, 29:852–855, api.semanticscholar.org/CorpusID:101462032
[107] V. M. Dembitsky, (2024), “Chemical Diversity of Ketosteroids as Potential Therapeutic Agents,” Microbiol Res (Pavia), 15 (3):1516–1575, 10.3390/microbiolres15030103.
[108] K. L. Schroeter, N. Abraham, N. Rolfe, R. Barnshaw, J. Diamond, and S. Y. K. Seah, (2022), “Bacterial Hydratases Involved in Steroid Side Chain Degradation Have Distinct Substrate Specificities,” J Bacteriol, 204 (9), 10.1128/jb.00236-22.
[109] M. Merlani et al. (2023), “Antimicrobial Activity of Some Steroidal Hydrazones | Enhanced Reader,” Molecules, 28, (3):1 .3390/molecules28031167.
[110] A. H. Smith, E. Zoetendal, and R. I. Mackie, (2005). “Bacterial Mechanisms to Overcome Inhibitory Effects of Dietary Tannins,” 10.1007/s00248-004-0180-x.
[111] T. P. Burris, (2023), “Cholesterol and Other Steroids”, Encyclopedia of Cell Biology (Second Edition), R. A. Bradshaw, G. W. Hart, and P. D. Stahl, Eds., Oxford: Academic Press, pp 233–240. 10.1016/B978-0-12-821618-7.00144-9.
[112] N. S. Nadaraia et al. (2019), “Novel antimicrobial agents’ discovery among the steroid derivatives,” Steroids, 144: 52–65, 10.1016/j.steroids.2019.02.012.
[113] A. Amgalanbaatar, H. Shimomura, K. Hosoda, S. Hayashi, K. Yokota, and Y. Hirai, (2014), “Antibacterial activity of a novel synthetic progesterone species carrying a linoleic acid molecule against Helicobacter pylori and the hormonal effect of its steroid on a murine macrophage-like cell line,” J Steroid Biochem Mol Biol, 140 :17–25, 10.1016/j.jsbmb.2013.10.023.
[114] L. Wang, X. Liu, W. Chen, and Z. Sun, (2024), “Studies on the Inhibition Mechanism of Linalyl Alcohol against the Spoilage Microorganism Brochothrix thermosphacta,” Foods, 13 (2), 10.3390/foods13020244.
[115] J. L. Dombach, G. L. Christensen, S. C. Allgood, J. LJ. Quintana, and C. Detweiler, (20240, “Inhibition of Multiple Staphylococcal Growth States by a Small Molecule that Disrupts Membrane Fluidity and Voltage | Enhanced Reader,” bioRxiv, 10.1101/2024.01.17.576101.
[116] A. Díaz et al. (2023), “The relationship between host defense peptides and adrenal steroids. An account of reciprocal influences,” Cytokine, 168: 156229. 10.1016/j.cyto.2023.156229.
[117] F. Wang et al. (2022), “Discovery of novel rost-4-ene derivatives as potential plant activators for preventing phytopathogenic bacterial infection: Design, synthesis and biological studies.,” Pest Manag Sci, 78 (8):3404–3415, 10.1002/ps.6981.
[118 Kartina, W. A. Mohammad, and A. Muhammad, (2019). “Characterisation of Phytochemical Content of Leaf Extract from Karamunting (Melastoma malabthricum L. using Gas Chromatography Mass Spectrmetry (GC-MS),” Biota, 4 (1): 16-23, 10.24002/biota.v4i1.2363
[119] K. Bakar, H. Mohamad, H. S. Tan, and J. Latip, (2019), “Sterols compositions, antibacterial, and antifouling properties from two Malaysian seaweeds: Dictyota dichotoma and Sargassum granuliferum,” J Appl Pharm Sci, 9 (10): 47–53, 10.7324/JAPS.2019.91006.
[120] E. Johannes, M. Litaay, N. Haedar, V. V. Randan, N. S. Rupang, and M. Tuwo, (2019). “Effectiveness of Methanol Extract Hydroid Aglaophenia cupressina Lamaoureoux as Antimicrobial in Resistant Methicilline Staphylococcus aureus (MRSA), Shigella sp., Malassezia furfur, and Candida albicans,” Journal of Physics: Conference Series, 1341 (2):1-12, 10.1088/1742-6596/1341/2/022015.
