Nanofikasi Fraksi Tanah Gambut untuk Modifikator Nanomagnetit/AH-Kitosan sebagai Kandidat Penanggulangan Pencemaran Zat Warna
DOI:
https://doi.org/10.22437/chp.v5i2.11105Kata Kunci:
peat soil fraction; nanomagnetite/HA-chitosan; dye contaminationAbstrak
The nanomagnetite/HA-Chitosan adsorbent has been successfully synthesized by the co-precipitation method. HA was synthesized from the peat soils of Geragai village, Tanjung Jabung Timur, Jambi province and chitosan isolated from marine animal shell waste around the city of Jambi. The results of FT-IR analysis showed that nanomagnetite/AH-chitosan has a spectra which was combination of the characteristic spectra of magnetite, HA and chitosan. Morphological analysis using SEM showed that nanomagnetite/AH-chitosan was in the form of fractal agglomerates. TEM image of magnetite/AH-chitosan showed that magnetite/AH-chitosan has nano scale magnetite core particles with a size between 4-22 nm. Crystallinity analysis showed that magnetite/AH-chitosan has 2θ characteristics of magnetite i.e., 30.1°, 35.4°, 43.1°, 57.0°, 62.68° and 74.5°. The magnetic saturation strength (Ms) decreased from 80.23 (magnetite) to 30.63 (magnetite/AH-chitosan) due to the coating of AH-chitosan on magnetite which was still effectively attracted by the external magnet with 96% effectiveness of adsorption of 25 mL Methylene Blue 10 mg/L.
Unduhan
Referensi
Aljeboree, A.M., Alshirifi, A.N., and Alkaim, A.F., 2017, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arab. J. Chem., 10, S3381--S3393.
Basuki, R., Ngatijo, Santosa, S.J., and Rusdiarso, B., 2018, Comparison the new kinetics equation of noncompetitive sorption Cd(II) and Zn(II) onto green sorbent horse dung humic acid (HD-HA), Bull. Chem. React. Eng. Catal., 13, 3, 475–488.
Basuki, R., Santosa, S.J., and Rusdiarso, B., 2017a, Ekstraksi Adsorben Ramah Lingkungan dari Matriks Biologi: Asam Humat Tinja Kuda (AH-TK), CHEMPUBLISH J., 2, 1, 13–25.
Basuki, R., Santosa, S.J., and Rusdiarso, B., 2017b, The novel kinetics expression of Cadmium (II) removal using green adsorbent horse dung humic acid (Hd-Ha), AIP Conf. Proc., 1823, March.
Illés, E., and Tombácz, E., 2006, The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles, J. Colloid Interface Sci., 295, 1, 115–123.
Koesnarpadi, S., Santosa, S.J., Siswanta, D., and Rusdiarso, B., 2017, Humic Acid Coated Fe3O4 Nanoparticle for Phenol Sorption, Indones. J. Chem., 17, 2, 274–283.
Krisbiantoro, P.A., Santosa, S.J., and Kunarti, E.S., 2017, Synthesis of fulvic acid-coated magnetite (Fe3O4–FA) and its application for the reductive adsorption of [AUCl4]–, Indones. J. Chem., 17, 3, 453–460.
Lasindrang, M., 2014, Adsorpsi Pencemaran Limbah Cair Industri Penyamakan Kulit Oleh Kitosan Yang Melapisi Arang Aktif Tempurung Kelapa, J. Teknosains, 3, 2, 132–141.
Liu, J.F., Zhao, Z.S., and Jiang, G. Bin, 2008, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol., 42, 18, 6949–6954.
Marfania, C., 2019, Imobilisasi kulit Lengkeng (euphoria longan lour) terhadap penyerapan ion logam Kadmium, CHEMPUBLISH J., 4, 1, 44–51.
Mo, W., He, Q., Su, X., Ma, S., Feng, J., and He, Z., 2018, Preparation and characterization of a granular bentonite composite adsorbent and its application for Pb2+ adsorption, Appl. Clay Sci., 159, 68–73.
Mohan, K., Ravichandran, S., Muralisankar, T., Uthayakumar, V., Chandirasekar, R., Rajeevgandhi, C., Karthick Rajan, D., and Seedevi, P., 2019, Extraction and characterization of chitin from sea snail Conus inscriptus (Reeve, 1843), Int. J. Biol. Macromol., 126, 555–560.
Ngatijo, N., Basuki, R., Rusdiarso, B., and Nuryono, N., 2020, Sorption-desorption profile of Au (III) onto silica modified quaternary amines (SMQA) in gold mining effluent, J. Environ. Chem. Eng., 8, 3, 103747.
No, H.K., Meyers, S.P., and Lee, K.S., 1989, Isolation and characterization of chitin from crawfish shell waste, J. Agric. Food Chem., 37, 3, 575–579.
O’Reilly, J.A.T., Masudo, T., and Kouzaki, D., 2018, Catalyst resin, U.S. Patent No. 10,023,711. Washington, DC: U.S. Patent and Trademark Office.
Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B., and Gu, J., 2012, Modifying Fe 3O 4 nanoparticles with humic acid for removal of Rhodamine B in water, J. Hazard. Mater., 209–210, 193–198.
Santosa, S.J., Kunarti, E.S., Aprilita, N.H., Wulandari, B., and Bawani, D.N., 2019, Sorption mechanism and performance of peat soil humin for Methylene blue and p-Nitrophenol, Indones. J. Chem., 19, 1, 198–210.
Stevenson, F.J., 1994, Humus chemistry: genesis, composition, reactions, John Wiley & Sons.
Stevenson, and Goh, 1974, Infrared spectra of humic acids: elimination of interference due to hygroscopic moisture and structural changes accompanying heating with KBr, Soil Sci., 117, 1, 34–41.
Sumarna, Y., 2008, Beberapa Aspek Ekologi, Populasi Pohon, dan Permudaan Alam Tumbuhan Penghasil Gaharu Kelompok Karas (Aquilaria spp.) Di Wilayah Provinsi Jambi, J. Penelit. Hutan Dan Konserv. Alam, 5, 1, 93–99.
Tripathi, A., and Rawat Ranjan, M., 2015, Heavy Metal Removal from Wastewater Using Low Cost Adsorbents, J. Bioremediation Biodegrad., 06, 06, 1–5.
Yustinah, Y., Hudzaifah, H., Aprilia, M., and Ab, S., 2020, Kesetimbangan Adsorpsi Logam Berat (Pb) Dengan Adsorben Tanah Diatomit Secara Batch, J. KONVERSI, 9, 1, 12.